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Abstract: Some recent work [11] have shown that the “classical” models of Perfectly Matched
Layers (PML), typically used as Absorbing Boundary Conditions in Computational Electromag-
netics codes, could lead to long-time linear growth of the solution. We propose here new PML
which eliminate this undesirable long-time behavior. For these new PML equations, we give
energy arguments that show the fields in the layer are bounded by a time-independent constant
hence they are long-time stable. Numerical experiments confirm the elimination of the linear
growth, and the long-time boundedness of the fields.
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Sur le comportement aux temps longs des modéles de couches
parfaitement adaptées

Résumé : Des travaux récents [11] ont montré que les modéles de couches parfaitement adaptées
“classiques”, utilisés comme couches absorbantes dans les codes de calcul en électromagnétisme,
pouvaient conduire & un comportement linéaire en temps de la solution. Nous proposons ici
des nouvelles PML (Perfectly Matched Layers) qui éliminent ce comportement indésirable aux
temps longs. Pour ces nouvelles équations, des arguments d’énergie permettent de montrer des
estimations uniformes en temps de la solution dans la couche, ce qui assure la stabilité aux temps
longs. Nous présentons des résultats numériques qui confirment 1’élimination de la croissance
linéaire des champs avec ce nouveau modéle.

Mots-clés : couches absorbantes, PML, équations de Maxwell, stabilité, systémes hyperbo-
liques, méthodes énergétiques



On the long-time behavior of unsplit Perfectly Matched Layers 3

Table of Contents

1 Introduction 3
2 Long-time behavior of the standard unsplit PML: A review 4
3 CFS unsplit PML model equations 6
4 Energy considerations for the new unsplit PML 8

4.1 A first-order energy decay result for the PML layer . . . . .. .. ... ... ... 9

4.2 A second-order energy decay result for the PML corner . . . . . . ... ... ... 11
5 Numerical Experiments 12
6 Conclusion 16

1 Introduction

The introduction by Bérenger [1] of the concept of the (split) Perfectly Matched Layer as an
Absorbing Boundary Condition (ABC) has resulted in much work towards eliminating as an
issue the presence of an artificial outer boundary in numerical simulations of wave problems
embedded in an infinite background. There are now two related versions of the PML, split [1]
and unsplit [2]-[3]. In addition to the application it finds in Computational Electromagnetics, the
PML idea has also been applied to wave problems in acoustics [4, 5|, elasticity [6], and shallow
water waves [7].

Initially it was thought that perturbations of the weakly well-posed split PML [8] give rise to
exponentially growing solutions (genuine instability); this has encouraged efforts to develop the
unsplit PML [2]-[3], where the layer equations arise from a zero-order perturbation of the Maxwell
operator so that strong well-posedness is maintained, as was shown in [9]-[10]. Subsequently,
Abarbanel et. al. [11] have provided an analysis that explains an observed late-time linear growth
of the amplitude of the axial field in the standard unsplit two-dimensional PML in rectangular
coordinates. Late time in the context of [11] means "long after the pulse has passed through
the PML, i.e., the solution is essentially constant in space." The equations they label as those
representing a "physical PML" will be referred to herein as the standard unsplit PML (also see
the Appendix and Equation (2.4) of [10]). Further, [11] offers a remedy which, while removing the
observed linear growth as verified with numerical experiments employing the "physical PML,"
nevertheless results in the loss of the perfectly matched property of the air/PML interface.
Recently, Bécache & Joly [12] showed that the split PML has at worst a linearly growing solution
in the late-time, i.e., not a genuine instability, and related these equations to those of the unsplit
version as presented in [2].The possibility of existence of such a linear growth was shown in [12]
via Fourier analysis and energy estimates for both the split and the unsplit PML (their unsplit
equations are related to those of the "physical" PML considered in [11]). We briefly review in
Section 2 these theoretical results, and add a new one regarding the energy in the corner unsplit
PML (where two layers meet to enclose a rectangular domain). In [13], an analysis, based on a
technical mistake regarding the Kramers-Kronig relations in a conducting medium, erroneously
showed that the standard split/unsplit PML is not causal and an alternative scaling function
was proposed as necessary in order to restore causality. Later, [14]-[15] described time-domain
implementations of the unsplit PML employing this alternative scaling function, labeled it the
"Complex Frequency Shifted" scaling function (hereafter referred to as "the CFS"), and showed
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4 E. Bécache, P. G. Petropoulos, Stephen D. Gedney

that its use is beneficial for simulations in elongated domains. One of the present authors has
also briefly considered in [10] the possible benefit of employing the CFS in the unsplit PML for
the three common coordinate systems. Briefly, it was found that the CFS results in the correct
zero-frequency limit for the unsplit PML, i.e., it reduces the relevant equations to Laplace’s
equation with the coordinate into the PML appropriately stretched. Thus, using the CFS, the
resulting PML equations correctly account for any DC component in the simulation space that
reaches the layer where they are imposed. In [10] it was shown that the standard time-domain
unsplit PML is governed by a causal (and symmetric) hyperbolic system independently of the
choice of the scaling function as long as the high-frequency limit (w — oo) of the scaling function
is a real constant.

In the present paper we determine that the CFS removes the late-time linear growth of the
axial fields discussed in [11] for the standard two-dimensional unsplit PML and, at the same
time, preserves both the perfectly matched property of the layer and the symmetric hyperbolic
character (which results in strong well-posedness) of the resulting PML equations in the time-
domain. This is accomplished in Section 3 by simply changing the fundamental scaling function
(Equation (2.4), [10]) used to derive unsplit PML’s in rectangular, cylindrical and spherical co-
ordinates to the CFS scaling function (Equation (9) below). Consequently, the CFS remedy
can also be applied to the three-dimensional unsplit PML in all separable coordinate systems of
interest to Computational Electromagnetics. In Section 4 we derive the equivalent of (2)-(3) and
(5), given below, for the resulting new unsplit PML and show that now all fields are controlled by
a constant, i.e., the linear growth of the standard unsplit PML is not allowed. Section 5 presents
numerical experiments that validate our analysis. The paper concludes in Section 6 with a short
summary.

Notations. We denote by (.,.) the L? scalar product in IR? and by ||.|| the associated norm.

2 Long-time behavior of the standard unsplit PML: A review

We first review some theoretical results applicable to the standard unsplit PML. Also, we present
a new result regarding the decay of the zero-order field energy in a corner unsplit PML (i.e.,
the region where two layers meet in order to completely surround a rectangular computational
domain).

Bécache & Joly [12] analyzed the 2D unsplit PML oriented in the direction parallel to the
—direction in the TE polarization for the fields E = (E,, E,,0)" and H = (0,0, H,)T. We
review those results after translating them to the polarization and layer orientation considered
in out Section 3, i.e., by considering an absorbing layer in the Z—direction (lying parallel to the
Z—direction). The relevant PML equations are:

atEy + O'Ey = asz - Bsz
OH, +oH, = 3,E,
OH; = —0,E,

OH; + ocH}; = 0,H,,
where o is a positive function of z. The following identity (equivalent to Lemma 2.2, [12]) is
satisfied by a first-order energy of (1):

d

2) 761 = —20]|0, Hy| 72 <0,

INRIA



On the long-time behavior of unsplit Perfectly Matched Layers 5

where 1
(3) &i(t) = g(llatHzlliz + 10 Ho| |32 + o Hl[72 + [|0:Ey + 0 By|[72),

with o being a positive constant. Equations (2)-(3) indicate that the quantities ;E, + o E,, Hy,
and 0;H, are bounded by a time-independent constant; therefore, H, can grow as ~ t, while H,
and Ey (see Lemma 2 in Section 4.1 below) are bounded by time-independent constants.

For the corner PML (where the Z—directed layer overlaps the Z—directed layer), and for
ox(z) = 0,(2) = o constant, the governing equations are (see [9]-[10]):

t ! !
&E, + 20E, + o / B,(t)dt = 0,H, — 9, H, (a)
0
(4) O,H, = 0,E, ()
OH, = —0,E, (o).

Theorem 1 The solution of (4) satisfies the following estimate, 3 C > 0 independent of t such
that

1
(5) Eo(t) = S(I1B | + | Ha|” + || H.|[*) < C.

Proof: Multiply (4)-(a) with E,, (4)-(b) with H, and (4)-(c) with H,, integrate over all of IR?,
and add to obtain, using integration by parts,

d 9 ¢ ! ! 2
©) G600 + (B0, [ By )at) = 20|15, "
lI:et F(t) = /OtEy(t')dt', 50 (Ey(t),/OtEy(t')dt') _ (%(f),zr(t)) _ %%HF(?&)H?. Then (6)
ecomes 0-2
@ S(El) + TIF@I) = ~20]1 |1

The proof concludes by noting that (7) implies &y(t) + %2||F(t)\|2 < constant Vt. W

It should be emphasized that [12] rigorously shows that the electromagnetic PML derived
from Maxwell’s equations does not possess exponentially growing solutions, i.e., no genuine
instabilities, hence the source of exponential instabilities of the type described in [16] must be
sought elsewhere.

Before proceeding it is instructive to consider the Helmholtz equation satisfied by the electric
field, Ey(z, z,w), in the standard unsplit PML. Following [10] we have:

1 1
2 2
+ + E, =
(8) 0.Ey . )Bz( e )BzEy) wepky =0,

where a,(z,w) = &(1 + U_"‘—Ei)) The w — 0 limit of (8), which corresponds to t — oo in
the time-domain, does not result in Laplace’s equation for E,; one obtains 8%Ey = 0 instead.
Consequently, the standard unsplit PML cannot be expected to absorb evanescent waves, or to
behave properly in long-time simulations.

Even though the standard unsplit PML layer suffers in the long time as described above,
this suffering cannot affect the solution in the interior computational domain due to the way

electromagnetic waves transport energy. Since, as shown above for the polarization considered
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6 E. Bécache, P. G. Petropoulos, Stephen D. Gedney

herein, the fields Fy and H, remain bounded (they actually decay to zero in computations) no
energy can exit normally from the PML towards the interior computational domain. Also, the
energy (which goes like ¢?) transported along the layer due to E, and H, cannot manifest itself
inside the computational domain since during actual computations in rectangular coordinates
this energy will enter the corner layer and will be absorbed. Of course this requires the numerical
scheme to satisfy a discrete analog of the Poynting theorem. This is the case for the Yee scheme
[19] employed in our Section 5; the contamination of the interior computational domain shown in
[11] may possibly be traced to the numerical scheme employed therein not possessing a discrete
Poynting theorem. Also, for other wave propagation problems, e.g., elasticity, it may be possible
that the linear growth of some field components inside the PML will eventually contaminate the
interior computational domain irrespective of the numerical scheme employed.

3 CFS unsplit PML model equations

In our analysis we will consider a Transverse Magnetic polarization electromagnetic problem on
the plane (z,2) € (—o0o0,00) X [—00,d] for the fields E = (0, E,,0)" and H = (H,,0, H,)T, and
a PML that occupies the region (z, z) € (—oo,00) x [0, d] where d is the width of the PML. The
medium permittivity is €, and the permeability is p. We proceed according to [10] choosing,
instead of Equation (2.4) in that paper,

B 0,(2)
(9) az(z’w) _§Z(1+ ’y—iw)’

where the role of &, is explained in [10], 0,(2) is a positive function (not necessarily zero at z = 0)

typically defined as 0,(2) = oz (3)™ where m is an integer, and v > 0 is a new parameter.
Particularizing Equation (A.3) of [10] to the geometry given above, the following frequency-

domain Maxwell system in the PML region is obtained (employing an e~*" time convention):

—iwDy = 8,H, — 0,H,

02(2)
v —iw

—iwB; = 0,E,

D, = &e(1+ )E,

B, = fz“(l + L(Z))HI
v —iw

—twB, = —0,Fy
L Y~ w
B,=f(—1—=
‘ &, Uz(z)+7_iw)

System (10), in contrast to the standard unsplit PML, gives the correct w — 0 limit as we now
show. Using (9) in (8), one finds that, for w — 0, the electric field E, satisfies

1 1
5(1+“z—<z>)8Z(s (14 2y
Z vy z ¥

(11) O2E, + 0,Ey) =0,

ie., it satisfies Laplace’s equation with the coordinate into the PML stretched as 2z = zg +
;0 & (1+ JZT(S))ds. This is the source of the superior performance over the standard unsplit PML
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On the long-time behavior of unsplit Perfectly Matched Layers 7

illustrated in [15] for elongated domains and in [17] for evanescent waves in waveguides. Also,
the presence of v results in the loss of the property of frequency-independent damping evident in
the standard unsplit PML. The magnitude of the reflection coefficient for a plane wave incident
on the layer modeled by (10), and terminated with a Dirichlet boundary condition, now is

2 z
(12) |R| = ¢ 2VERRs s g ods,

where £, is the Z—component of the incident wave vector. In practice, the frequency variation in
(12) is not detrimental as we now explain ; picking -y to be the lowest frequency contributing to
the signal, the ratio 7;‘4’_—2& varies from 1/2 to 1, thus achieving a good damping of propagating
waves.

To simplify the presentation we set £, = 1 and € = p = 1 for the remainder of the paper.
Using the Fourier transform in time and algebraic manipulation in (10) we write the following
time-dependent system of equations in the PML:

OBy + 0.(2)(Ey — Py) = 0. Hy — 0, H, (a)

Py +~(Py —Ey) =0 (b)
(13) O¢Hy + 0,(2)(Hy — My) = 0,Ey ()
oM, + ’)’(Mz — Hac) =0 (d)

OH, — 0,(2)H, — (v + 0,(2))M, = —0, By (e)

oM, + (")’ + Gz(z))Mz + Uz(z)Hz =0. (f)

When o,(z) = v =0, (13) reduces to a symmetric (i.e., strongly well-posed) hyperbolic system
for €, > 1 (see Section 3 of [10], where the role of £, is further elucidated), while when v = 0 with
0,(z) # 0, (13) reduces to the standard unsplit PML whose principal part is also a symmetric
(i.e., strongly well-posed) hyperbolic system. System (13) will be used to derive the first-order
energy estimate which generalizes (2)-(3) to the case v # 0. It will be fruitful to rewrite it
as a first-order symmetric hyperbolic system with a lower-order term for the field vector U =
(E,, P,, Hy, My, H,, M,)T as

(14) U, + AU, +BU, +CU=0.

Using (13) the 6 x 6 matrix C is identified as:

o,(z) —oy(z) 0 0 0 0
- Y 0 0 0 0
_ 0 0 0,(z) —0,(z) 0 0
(15) C= 0 0 —y 0% 0 0
0 0 0 0 —0,(z) —(0.(2) +7)
0 0 0 0 a,(z)  (0,(2) +7)
To be completely defined, system (14) needs some initial conditions:
(16) U(t = 0) = Up = (B, B}, Hy, M}, H, M7)"

RR n°® 4538



8 E. Bécache, P. G. Petropoulos, Stephen D. Gedney

For convenience, we introduce the space
X = (L*(R%)°
equipped with the norm:
2 2 2 2 2 2\1/2
O = (1B ]17 + 1P + [ Hall? + 1M |* + | L + M)
and with the associated scalar product denoted by (.,.)x. We then have:

Theorem 2 System (14)-(16) is well posed for any initial condition Ug € X. Furthermore, the
solution satisfies the following estimate:

(17) U@l < e [[[Toll

where a = ||o|| +7-

Proof: This is a consequence of the fact that system (14) is a zero-order perturbation of a
symmetric hyperbolic system (thus strongly well posed) (see [18]). Then, multiplying (14) with
U7”, and using the symmetry of A and B, one obtains:

1
2 JIR?

where &y denotes the standard zero-order field energy:

(18) igo(t) +

o [0,(UTAU) + 0,(UTBU))dx + /IR2(UTCU)da: =0

£0(t) = 5 IV

The middle integral in (18) vanishes by the Divergence Theorem leaving

(19) L6s(t) = ~(CU, )

The estimate follows easily from the Gronwall’s lemma. H

Remark 1 One can notice that, even though the problem is well-posed, estimate (17) does not
prevent the solution to blow up erponentially when the time goes to infinity; in numerical calcu-
lations such a phenomenon is often described as an instability and is difficult to distinguish from
a real ill-posedness of the equations. This is why in [12], a distinction is made between these
two mnotions, and a system is characterized as stable if no exponential blow up of the solution is
possible.

4 Energy considerations for the new unsplit PML

Throughout this Section we will consider 0,(z) = ¢ to be a constant and, similarly, o,(z) = o
when it arises. The generalization of this Section’s results to the case of variable o, and o, will
be given elsewhere.

First, we address the issue of long-time linear growth of the fields in the new PML from the
point of view of [11]. When J, = 0 and 9, = 0 are substituted in (14), the resulting system
U, = —CU decouples into three 2 x 2 systems. The first two such sub-systems, for (E,, P,)
and (Hy, M), both exhibit the eigenvalues (0, —(o +y)), while the third, for the pair (H,, M,),
exhibits the eigenvalues (0, —y). Hence, the linear growth in time, discussed in [11] for the unsplit

INRIA



On the long-time behavior of unsplit Perfectly Matched Layers 9

PML with v = 0, is absent from (13) when 7 # 0, and the fields tend to a constant whose value
depends on the initial conditions. At the same time the perfectly matched property is preserved
by construction.

Next we consider the electromagnetic energy identity (19). If the right hand side of (19) is
negative then we would have an estimate for the zero-order energy, i.e., &(t) < C where C is
a time-independent constant. Unfortunately, the quadratic form under the integral, U7 CU, is
not strictly positive semi-definite since the symmetric part of C is indefinite. Therefore we have
decided to attempt to determine whether the fields in the new PML are bounded in the long-time
through the first- and second-order energy arguments given below.

4.1 A first-order energy decay result for the PML layer

We consider in this section problem (13) with ¢ > 0 and v > 0. We introduce the first order
energy:
261(1) = 1@+ H:|" + 110+ + ) Byl + |8 +7) Hall
(20)
o (29 I1Hall” + 0 | Hy — M| + o || M|

Lemma 1 The energy & of the solution of (13) satisfies the identity:

d
(21) 610 = ~20 (IO H | + oy || H, = My ||*) <0

which shows that it is decreasing in time.

Proof: the technique is very similar to the one used in [12]:
e we apply the operator 0; + <y to equation (13)-(a) and multiply it by (0; + v + o) Ey
e we apply the operator 0; + v + ¢ to equation (13)-(c) and multiply it by (¢ + v)Hy
e we apply the operator 9, + v + o to equation (13)-(e) and multiply it by (9; + v)H,

and we add the three identities. Using that o (resp. 7y) is constant, one can commute 9, and o
(resp. 0, and 7y) so that the terms containing the space derivatives vanish. It remains

A+ Ay +A3=0
with
A = (0 + (v + 0))(0r — 0)H,, (8 +7)Hz) — ((v + 0) (0 + (v + 7)) M, (0 + 7)H)
Ay = (010 +7) By, (0 + (v + 0)) Ey) + (0(0; +7)(Ey — By), (0 + (v + 0)) Ey)
A3 = (0 + (y+0))0iHy + 0(0s + v+ 0)(Hy — M), (0; + v)Hy)

It is easy to rewrite the first term, using (13)-(f) as

O + ’Y)Hz||2

Av = (@t (v +0))(@ — 0V H, (4 + V) H:) + (7 + ) He, (3 + VH) = 5

The second term can be rewritten using (13)-(b) as

1d

Ay = (04(0y +7)Ey + 0(0y + ) — ovEy, (0 + (v + 0))Ey) = oY 7 (8 + v + o) By ||

RR n® 4538



10 E. Bécache, P. G. Petropoulos, Stephen D. Gedney

For the third term, we have to work a little more and we first decompose it in the following way:
Az = (04 +7)0Hy + 00 Hy + (0 + v + 0)Hy — 0(0p + )My — 0 Mg, (8¢ + ) Ha)
Using (13)-(d), this can be rewritten as

Az = ((at + W)atHwa (6t + ')’)Hw) + U(QatHw + U(H:c - Mw)a (at + V)H:c)

1d
= H, 2 H, 2 H,
@V H + 20 |0 H | + 207 | Ha
+o (H Mwaat )+U 7(H MwaH )
To conclude, we remark first, (again using (13)-(d)):
1d
(Hy— My, O, Ty) = (Ou(Hy— M), Hy~ My (90 M, By~ My) = 54 | Hy = My |1 Hy — M

and in the same way:

Y(Hy — My, Hy) = 7| Hz— JV—’%”2 +y(Hy — My, My) =y ||Hy — JV—’%”2 + (0¢ My, My)

= H,— M, M,
7l I? 4+ 35 1

Therefore
1d 2 2
45 = 5= (||(at+7)H 1>+ 20 || Hy ||” + 0® | Hy — My||* + 0” | M, II)
+20 |0 Ha|” + 207 || Hy — My |)”
|

Theorem 3 The solution of (13) satisfies the following estimate,

1/2
VL) + ()] < ol + 22
(22) £1/2(0
I1E,(8)]] < ||| Uolll + +(7)

Proof: these estimates are a consequence of lemma 1 and of the following technical lemma. B
Lemma 2 Let G be a function defined in L*°(0, 00, L>(IR?)), and G its norm:

G =sup||G(t)|

>0
Let H be related to G through the following differential equation
OH+~vH =G, H(0)=Hy
then it satisfies the following estimate
|H(t)|| <Cy, VE>0
where C., = [|Hol| + G /7.

INRIA



On the long-time behavior of unsplit Perfectly Matched Layers 11

Proof : The solution of the ordinary differential equation is determined by:
t
H(z,t) = Hy(z)e™ " —I—/ Gz, s)e ") ds
0

so that ]
1@ < [Holle™ +| [ Glas)e s
0

Using the identity:

(/Ot G(z, 3)6_7(t_3)d8)2 = (/Ot G(z, 5)6_7(t_3)ds) (/Ot G(z, u)e_7(t_“)du)

it is then easy to show that

t 2 t ot
/G(:v,s)e—v(t—S)ds < //6_7“_5)_7@_”) 1G()IG(w)| dsdu
0 0o Jo
ot 2 2
< g2 (176> Sg_Q
Y Y

which allows to conclude. W
As a consequence of Theorem 3, it is easy to see, using the equations (13) at the initial time
t = 0 in order to rewrite the initial first-order energy £:(0) with respect to the initial conditions,

that if Up € X and additionally (rat Ej, rot ﬁo) € (L*(IR?))? x L*(IR?), the solution of (13)
satisfies the estimate: there exists a constant C' > 0 independent of ¢ such that

2(0)] + I1H(0)] < © (14 2) Dol + st 2]+ ot 7] )

(23) )

o+

HE@@N|§(7(U:+;%;;HHU5HL+ e B8] + ot 29

o+

4.2 A second-order energy decay result for the PML corner

For the new unsplit PML in a corner, where the £—directed layer overlaps the Z—directed layer,
and for o5(z) = 0,(z) = o constant, the governing equations are (see the Appendix of [10], and
do some differentiation of integrals using Leibnitz’s Rule):

OBy +20E, + 0*(1 = 2)P — 02yQ = 0,H, — 0,H, (a)

O:H, = 8,E, (b)
(24) O H, = —0,E, (c)
(8 +7)P =B, (d)
G +7)Q=P (e)-

In contrast to the case v = 0, we have not been able to derive a zero-order energy decay result
for (24). We proceed with an identity satisfied by a second-order energy, defined as:

26(t) = ||(0 + ’Y)ZHzH2 + || (0 + ’Y)2Hx||2 +|](8 + ’7)2Ey||2
(25)
+? (|0 By |1* + v Ey )

RR n" 4538



12 E. Bécache, P. G. Petropoulos, Stephen D. Gedney

Lemma 3 The energy & of the solution of (24) satisfies the identity:

d
(26) E(t) = =20 (18,0, + 1B, | + o 1|aBy|I*) <0

which shows that it is decreasing in time.

Proof: The technique is very similar to the one used in Lemma 1:
e we apply the operator (9; + v)? to equation (24)-(a) and multiply it by (9; +v)2E,
e we apply the operator (8; + )2 to equation (24)-(b) and multiply it by (8; + )2 H,
e we apply the operator (8; +v)? to equation (24)-(c) and multiply it by (8; + 7)2H,
|

Similar manipulations lead to the stated result.

Theorem 4 The solution of (24) satisfies the following estimate: 3C,, > 0 independent of t such
that
(27) [ He ()]l + [ H-()]| + [ Ey ()] < Cy

where C, depends on the initial conditions and on vy as 1/~?% for small .

Proof: Again, these estimates are a consequence of Lemma 3 and of the technical Lemma 2. B

One can notice that the estimate (27) does not reduce to (5) as v — 0. Also, the attempt
to estimate a zero-order energy did not lead us to an estimate like (17). In our numerical
simulations, we do not consider a problem where the computational domain requires a corner
layer for the PML implementation.

5 Numerical Experiments

A two-dimensional simulation of an electric line source exciting a parallel plate waveguide with
perfectly conducting walls was performed as a validation of the energy estimates given in Section
4. The problem space is illustrated in Figure 1. The space was discretized via a two-dimensional
Yee lattice with uniform grid spacing Az = Az = Imm. The center of the lattice was excited by
a §—directed point-current source, thus launching a T'M, wave. The source had a time signature
given by either

_(t—t0)2
(28) Jy(t)=e o sin2rf.t,
or
¢ _=to)
(29) Jy(t):—Qt—e % sin 27 f.t,
w

where ¢, = 3.183 x 10710 sec, ¢, = 4t,, and f, = 3 x 10° Hz. The normal-to—# boundaries
were terminated with a 10 cell thick PML, itself terminated with a perfect electric conductor
boundary condition on the tangential electric field Ey. The conductivity of the PML was scaled
using polynomial scaling with m = 4 and 04, = 10.61 S/m. The simulations with source
(28) were performed with a time step of At = 1.9065 x 10712 sec, while those with (29) were
performed with a time step of At = 2.35 x 10712 sec or At = 1.175 x 10712 sec. Three values of
v are considered, v = 0, 0.08, 0.16.

Initially, the simulation was performed using the standard unsplit PML (y = 0) with source
(28); it was run for 100,000 timesteps, and the fields were sampled at spatial index (31,59) and
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Figure 1: Geometry of the numerical experiments.
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Figure 2: For source (28): a) The late-time linear growth of the axial PML field, H,(31,59,t).
The H,(31,59,t) field behaves exactly like the graphed electric field Ey(31,59,t). This case,
v = 0, represents the standard unsplit PML. b) v = 0.08; the late-time linear growth of H, has

been removed.
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Figure 3: For source (29): a) The late-time linear growth of the axial PML field, H,(31,59,t).
The H,(31,59,t) field behaves exactly like the graphed electric field Ey(31,59,t). This case,
v = 0, represents the standard unsplit PML. b) v = 0.08; the late-time linear growth of H, has
been removed.
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Figure 4: The axial magnetic field, H,(31,31,t), inside the computational domain for source
(29).
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(31,31). Figure 2-(a) illustrates the late-time response of the axial Magnetic field, H,, in the
PML; it is observed that it exhibits a linear growth in time while the remaining field components
tend to zero in full accordance with the discussion following Eq. (2)-(3).

Next, this simulation was repeated with v = 0.08. The late-time fields are shown in Figure 2-
(b). Now, all field components remain bounded by a time-independent constant in full agreement
with our energy considerations in Section 4.

To test whether the zero-frequency content introduced by the sharp turn-on of the source is
respounsible for the late-time DC offset exhibited by the computed fields when v > 0 we repeated
the two previously described simulations with source (29). The results in Figure 3-(a) show
that the late-time linear growth of the axial magnetic field in the PML is independent of the
source’s DC spectral content, again verifying the discussion following Equations (2)-(3). Figure
3-(b) shows that when v = 0.08 only the axial magnetic field tends to a constant while the
other field components decay to zero. Again, this is in agreement with our energy considerations
given in Section 4. For this set of simulations we also graphed the axial magnetic field inside
the computational domain; Figure 4 shows that the axial field decays to zero in the late time for
v > 0, hence the linear growth indicated above for v = 0 is restricted to the PML layer (at least
for the time interval considered herein = 7.4 x 10* source durations). Figure 5 shows the effect
of a reduction in the timestep with v = 0.08. Again, the fields in the PML remain bounded by a
time-independent constant. Finally, Figure 6 verifies the dependence of the field estimates on
since in this case doubling this parameter reduces the long-time constant value of the fields H,
and H, (while leaving the value of E, largely unaffected) in accordance to (22); these long-time
values should be compared to those shown in Figure 5. As it is evident from all the Figures, the
long-time value of E, is not sensitive to the variation in 7 since o > 7 (see second relation in

(22)).
6 Conclusion

With analysis and numerical experiments we explained how the Complex Frequency Shifted
scaling function (9) eliminates the long-time linear growth, identified in [11], of the fields in the
unsplit PML while maintaining the perfectly matched property of the equations. Also, we showed
via energy arguments that all the fields in the new unsplit PML are bounded by time-independent
constants. The present work, together with the numerical results on the absorption properties
of the CFS scaling function for elongated domains [15], indicate that the resulting unsplit PML
is the most suitable for problems requiring long-time integration of the time-domain Maxwell
equations. Also, it is suitable for problems with significant low-frequency and/or evanescent-wave
content [17].
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