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Abstract: We design a new and efficient numerical method for the modelization of elastic wave propagation in
domains with complex topographies. The first specificity is the use of the fictitious domain method to take into
account the boundary condition on the topography: the elastodynamic problem is extended in a domain with
simple geometry, which permits the use of regular mesh. The free boundary condition is enforced introducing
a Lagrange multiplier, defined on the boundary and discretized with a non uniform boundary mesh. This leads
us to consider the first order velocity-stress formulation of the equations and particular mixed finite elements.
These elements have three main non-standard properties: they take into account the symetry of the stress
tensor, they are compatible with mass lumping techniques and lead to explicit time discretisation schemes, and
they can be coupled with the Perfectly Matched Layer technique for the modeling of unbounded domains. Our
method permits to model wave propagation in complex media such as anisotropic, heterogeneous media with
complex topographies or/and with cracks, as it will be illustratred by several numerical experiments.
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Domaines fictifs, éléments finis mixtes et couches absorbantes
parfaitement adaptées pour la propagation des ondes élastiques 2D

Résumé : Nous proposons une nouvelle méthode numérique performante pour la modélisation de la propaga-
tion d’ondes élastiques dans des domaines & topographies complexes. La premiere spécificité est 1’utilisation de
la méthode des domaines fictifs pour prendre en compte la condition aux limites sur la topographie: le probleéme
élastodynamique est étendu & un domaine de géométrie simple, ce qui permet d’utiliser un maillage régulier. La
condition aux limites de surface libre est imposée en introduisant un multiplicateur de Lagrange, défini sur la
frontiere et discrétisé sur un maillage non uniforme de la frontiere. Ceci nous conduit & considérer la formulation
des équations en systéme du premier ordre vitesse-contraintes et & utiliser des éléments finis mixtes particu-
liers. Ces éléments possedent trois propriétés non standard : ils prennent en compte la symétrie du tenseur des
contraintes, ils sont compatibles avec des techniques de condensation de masse qui conduisent & des schémas
explicites, et ils peuvent étre couplés avec la technique des couches absorbantes PML (Perfectly Matched Layers)
pour la modélisation de domaines non bornés. Notre méthode nous permet de modéliser la propagation des
ondes dans des milieux complexes, par exemple des milieux anistropes, hétérogenes a topographies complexes
ou/et avec des fissures, comme cela sera illustré par plusieurs résultats numériques.

Mots-clé :  éléments finis mixtes, condensation de masse, ondes élastiques anisotropes hétérogenes, méthode
des domaines fictifs, couches absorbantes PML



Fictitious domains, mized FE and PML for 2D elatodynamics 3

Table of Contents

1 Introduction 3
2 The linear elastodynamic problem 5
3 The Fictitious domain method for the elastodynamic problem 5
3.1 The mixed velocity-stress formulation . . . . . . ... ... L o oo 6
3.2 Application of the domain fictitious method to elastodymics . . . . . . .. ... ... ... 6
3.3 Semi-discretisation in space . . . . . ...l e e 7
3.4 Total discretisation . . . . . . . . . L L L 8
4 A new absorbing layer model (P.M.L) 9
4.1 The PML model for a general first order hyperbolic system . . . . . ... ... ... ... ..., 9
4.2 Application to elastodynamics . . . . . . . .. L Lo e e 11
5 Construction of the ); — @)y mixed finite element 11

6 Stability and dispersion analysis of the ()1 — ()9 element in the case of a homogeneous,

isotropic medium. 13

6.1 Interpretation as a finite difference scheme . . . . . . . . . . ... L Lo, 14

6.2 Stability condition . . . . . . . .. e e e 14

6.3 Dispersion Analysis for the total discretized scheme . . . . . . . . . ... ... oo 16

7 Numerical Results 17

7.1 Rayleigh waves and PML . . . . . . . . . e 18

7.2 Homogeneous, anisotropic elastic medium. . . . . . . . ... Lo Lo oo 19
7.3 Coupling with the fictitious domain method: the case of an heterogeneous elastic medium with

complex topography . . . . . .. L 20

8 Conclusion 20

1 Introduction

In this work, we present a fictitious domain method for modeling time dependent elastic wave propagation
in complex media such as heterogeneous anisotropic media of complex geometries. From an industrial point
of view, the main applications concerned by this work are the study of seismic waves in media with complex
topographies and the non destructive testing (diffraction by a crack of complex geometry). In this paper we will
restrict ourseleves in the first application considering the elastodynamic problem in a domain with a complex
topography (see Fig. 1).

Among the possible methods for solving this problem, the finite difference method is one of the most
attractive. It uses a regular mesh with an explicit time discretisation, and therefore is very efficient from the
computational point of view. Its main drawback is that it produces spurious diffractions when the boundary
does not fit the grid mesh (see Fig 1-left). An alternative is to use finite elements with a nonuniform mesh,

|7

lo To
Figure 1: Left: finite difference method (staircase approximation). Right: Finite elements
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4 E. Bécache, P. Joly and C. Tsogka

that can fit exactly the complex geometry of the boundary, see Fig. 1-right. Nevertheless, other disadvantages
are introduced. The numerical implementation is much more difficult, the efficiency may be decreased by the
unstructured nature of the data, and finally the CFL stability is affected: in order to fit the complex geometry
of the boundary, the mesh may contain elements of very small size, which implies, because of the CFL stability
condition, the use of a very small time step if one uses an explicit scheme.

We propose here the use of an alternative method, the fictitious domain method (also called the domain
embedding method) which combines the efficiency of the finite difference method (regular meshes and explicit
time discretisation schemes) with a good approximation of the topography. This method was initially developed
for solving problems with complex geometries[2, 16], particularly in the stationary case. The study of the
fictitious domain method for time dependent problems has started few years ago[17, 12, 15]. Its principle is to
extend the solution to a simple shape domain (typically a rectangle in 2D) containing the domain of interest,
independent of the boundary of complex geometry, and to impose the boundary condition via the introduction
of a Lagrange multiplier on the boundary. The main point is that we have now two unknowns, the extended
function, defined in the enlarged simple shape domain and the auxiliary variable, defined on the boundary of
complex geometry, so that the mesh for computing the extended function can be chosen independently of the
geometry of the boundary. In particular, the use of regular grids allows simple and efficient computations.
Of course, we have to pay for this advantage in terms of some additional computational cost due to the
determination of the new boundary unknown. However, the final numerical scheme appears to be a slight
perturbation of the scheme for the problem without obstacle so that this cost may be considered as marginal.

In the case of an elastic medium the boundary condition is a free surface condition, that means, the normal
stress is zero on the surface : in order to consider this condition as an equality constraint, we are led in a
natural way to use the mixed velocity-stress formulation for elastodynamics. Then the Lagrange multiplier
can be interpreted as the jump of the velocity through the surface. Another advantage of working with the
first-order mixed velocity-stress formulation is that it is well suited to the use of a new absorbing layer model for
bounding the computational domain: the Perfectly Matched Layers (PML), introduced by Berenger[10] for the
2D Maxwell problem and that can be extended to elastodynamics. This model has astonishing properties : the
reflection coeflicient at the interface between the layer and the free medium is zero whatever are the frequency
and the angle of incidence. The extension of this model to elastodynamics is natural when using the mixed
velocity-stress formulation.

These considerations lead us to find an efficient approximation of the time domain mixed velocity-stress
formulation. In particular for stability reasons (conservation of energy), we have decided to use a discretisation
procedure in space based on a variational formulation of the velocity stress system, which is a first order
hyperbolic system. At this stage, our main requirement is to define a spatial discretisation which allows the
obtention of an explicit time discretisation scheme (mass-lumping).

Several mixed finite element methods are proposed in the literature especially for plane elasticity. We refer
for example to PEER’S element introduced by D. N. Arnold, F. Brezzi and J. Douglas[1] and more recently
to the work of R. Stenberg[20] and M. Morley[18]. One of the well known difficulties for mixed elements in
elasticity is to take into account the symmetry of the stress tensor. The method used in these papers [1, 20, 18]
consists in working with a space of non necessarily symmetric tensors and imposing the symmetry in a weak
way. Namely, the symmetry is enforced via the introduction of a Lagrange multiplier. Although these methods
are very interesting for the plane elasticity problem, we did not retain them as they lead to an implicit scheme
in time.

That is why we have constructed an original mixed finite element (inspired from the second Nedelec’s
family[19]) using spaces of symmetric tensors for the stress[7]. These spaces will fit our objectives.

The error analysis of these mixed finite elements will not be discussed here, we refer the reader to[9, 8],
where a non classical convergence theory is presented.

The present paper is organized as follows. In §2 we briefly recall the equations of elastodynamics. In §3 we
describe the fictitious domain method applied to elastodynamics, with a free surface condition on the boundary.
We explain in §4 how to apply the PML to the elastodynamic problem. We introduce in §5 the new family of
mixed finite elements for linear elasticity, which permits us to make mass lumping. The dispersion and stability
analysis of the lowest order element is presented in §6 in the case of an homogeneous isotropic medium. Finally,
we show in §7 some numerical results.

INRIA
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2 The linear elastodynamic problem

We want to solve the linear elastodynamic problem with a complex topography (see Figure 2-left). The solution
is governed by the elastic wave equation in 2 and we impose the free surface condition on I'g. For the sake of
simplicity a Dirichlet condition is assumed on the exterior boundary I' p but we will see in section 4 how we can
take into account the modelisation of an unbounded domain by an efficient absorbing layer model (PML).

Notations. In the following, we identify the space of 2 x 2 tensors with the space £(IR?) of linear applications
from R? to IR?. We define the linear form, as(c) = 015 — 031, and the subspace of symmetric tensors of £(IR?):

£(R2) = {0 € L(R?) / as(c) = 0}.

The scalar product in £(IR?) is defined by o : 7 = 0;j7;j, forall (¢,7) in £(IR?) and || is the associated norm.
Finally, the divergence of a tensor is defined as:

8011 (90’12

div o = O O
B 0o 0022
6331 (91'2

The continuous displacement problem. We consider now the following elastodynamic problem :

82
Q@tg —divo(u) =g inQ
(1) u=0 onTI'p
oc-n=0 onI'g

with some initial conditions at time ¢t = 0 that we will systematically omit in the following. In (1), u = (u1,u2)?
denotes the displacement, o(u) is the stress tensor and ¢ = g(z) is the density. Consider £(u) the strain tensor,

ie.,
. 1 8uz (9Uj
8,'3‘(%) B 5 (61'J + (91',) '

The stress tensor is related to the strain tensor by Hooke’s law

o(u)(z,t) = C(z)e(u)(z, 1),

where C(z) is a 4 x 4 positive tensor having the classical properties of symmetry[3]. The density is assumed to
be bounded,
0<go <po(r)<oy <+oo pp. z€Q,

In the following, we set A(z) = C(z)™" and we suppose that A(z) satisfies :

Vo e L5(R?) O0<alo)? <A(z)o:0 < M|o

3 The Fictitious domain method for the elastodynamic problem

In this section we apply the fictitious domain method for solving the elastodynamic problem (1). As explained
in the introduction, this method consists in extending the solution of problem (1) to a larger domain of simple
geometry (see Fig 2) and in taking into account the boundary condition in a weak way, thanks to the introduction
of a Lagrange multiplier. To do so with the free surface condition (Neumann condition), o has necessarily to
be one of the unknowns. Therefore, we have to write the elastodynamic problem (1) as a first order hyperbolic
system, the so called velocity-stress system.

Remark 1 More generally, the fictitious domain method can be used for the essential conditions, i.e. conditions
that can be taken into account in the functional space.

RR n° 3889
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3.1 The mixed velocity-stress formulation

Problem (1) is equivalent to the mixed velocity-stress system :

( g% —dive = f inQ (4)
A@_a —e(v) = 0 inQ (i)
2 ¢ o ,
v = 0 onlp (i)
\ 0N = 0 onTg (iv)

where v = % is the velocity in Q and f = % Consider the spaces

(X ={re(H(dv,)? r-i=00nTs},
X*={r e X, 7 symmetric},

M = (L*(2))?,

the variational formulation of problem (2) is :

( Find (0,v) € X* x M such that:

\

d

_ — X5
(3) S @ a(o,7) + b(1,v) =0, V7T e X3,

d

EC(U,M) - b(aaw) = (f:w): Vw € M,

where we have set :

( a(a,T)z/AU:Tda:, V(o,7) € X° x X?,
Q

(4) ¢ c(v,w) = / ov - wdz, V(v,w) € M x M,
Q

b(T,w):/divr-wdm, Y(r,w) € X% x M.
\ Q

t
This system satisfies the classical energy estimate E(t) = E(0) +/ (f(s),v(8))mds, the energy being defined
as 0

1 1 1 1

E(t) = =(Ao,0)g + =(pv,v)m = =a(o,0) + =c(v,v)

2 2 2 2
Remark 2 To obtain this formulation it is crucial to work in the space X*® of symmetric tensors : only in this
space operators —e and div are adjoint.

3.2 Application of the domain fictitious method to elastodymics

We now extend solution of problem (2) to the solution, still denoted (v,o) for simplicity, of a problem posed
in an enlarged domain C, which is a simple rectangle (see Fig 2), with Dirichlet conditions on the external
boundary,

( g% —dive = f inC
A@_a —e(w) = Abpy inC
(5) ¢ o :
v =0 on 9C
L 0-n =0 onIg

INRIA
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where A is the tensor of components A;; = A;n;, A being a new unknown, only defined on the boundary I'g.
We introduce the spaces (denoted also X, X?® and M for simplicity)

N
7\
/ \
/ \
rs ________ / N ]

Mo

Figure 2: Left: the original domain. Right: the enlarged domain
X ={re(H(div,0))*} ; X*={r € X,7 symmetric },
(6)
M= (L*(C)) ; G=(H{Ts)),

defined on the whole rectangle C'. The variational formulation of (5) can be written as follows:

( Find (o,v,)) € X® x M x G such that:
d .
—a(o,7) + b(r,v) —s(1,A) =0, V1 e X (%)
dt
(7) 3
& e(w,0) ~ Mo, w) = (f,w), vwe M (i)
\ s(o,p) =0, VpegG (i)

the bilinear forms a(-,-),b(:,+), c(+,-) being defined by (4) (with C instead of ), with
s(1,A) = (m7, N, V(1,A) € X* xG.

Actually the unknown A can be interpreted as a Lagrange multiplier corresponding to [U]FS. Obviously, the

restriction of (v,0) to Q still satisfies (2). Moreover, we can remark that the restriction of the solution to Q°
(where Q° denotes the complementary of Q1 in C) also satisfies (2) where Q is replaced by Q° (and I'p denotes
aC N 8N°). Now if we multiply (2)-(ii) with a function 7 € X* (X* being defined by (6)), and integrate in
QUQ’, an integration by parts of the second term gives

—/ e(v)rde = / vdivrde — (rit, vt — v’)rs = b(7,v) — s(, [v]r,),
Quae Quas

which yields (7-(i)), if we set A = [v]p.. Since the free surface boundary condition on I's is not taken into
account anymore in the new definition of space X, it has to be imposed in the formulation, this is done with

(7-(iii)).

Remark 3 There is a strong link between the fictitious domain method and the boundary integral equation
method. The extended solution is chosen such that the normal stress is continuous through T's and the new
unknown corresponds to the unknown of the BIE obtained using o double layer potential representation for v[5].

3.3 Semi-discretisation in space

Consider now the finite dimension spaces X; C X°, My C M and G, C G with the classical approximation
properties:

xs =0, VoeX?®

inf |jo — 73|
ThEX],

inf v — =0, WweM
Wi2f v —wlly =0, Vo

RR n° 3889
' IN=pallg =0, VA€
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The semi discretisation in space of problem (7) can be written:

( Find (oh, v, An) € X§ X My, x G, such that :
23 Un, Th) + b(Th, vr) = 8(Th, An) =0, vre X
(8) 4
d
—(vn, wn) = b(on, wn) = (f, wn), Ywp € My,
dt
. (Uhﬁa ,u'h)r‘s =0, VILh € Gy

We introduce here By, = {Ti}iv:ll, By, = {wi}f\fl and By, = {ui}fv:zl the bases of X, M} and Gj, respectively
(N1 = dim Xﬁ, Ng = dim Mh and N3 = dim gh), [Eh] = (21,...,21\]1), [Vh] = (Vvl,...,VNQ) and [Ah] =
(A1, ...,An,) the coordinates of op, vy and Ap in the bases By,, By, and By,. In these bases, (8) can be
written in the following matricial form:

Find (Zp, Vi, Ap) € L2(0, T; RN x L2(0, T; IRN?) x L?(0, T; R™?) such that :

d
—ApXy + B;’:Vh —SpAp, =0

9) . dtd
Vi
— — Bp¥ = I
Ch 7 RXh h
| sis =0

where M* denotes the transpose of the matrix M. In practice, and this is the interesting point in the fictitious
domain method, we introduce two meshes: the volumic unknowns (V},,¥;,) are defined on a regular grid, while
the surfacic unknown Ay is computed on a nonuniform mesh on I'g, see Fig. 13-left. From the theoretical point
of view, the well-posedness of problem (9) and the convergence of the method is linked to the obtention of a
uniform inf-sup condition which leads to a compatibility condition between the boundary mesh and the uniform
mesh[23]. Practically, if H denotes the boundary mesh stepsize and h the grid stepsize, it suffices that H > 1.5h.

At this point we can see the importance of mass-lumping: assume for the moment that we can find appropriate
finite element spaces and the adequate quadrature formulas in order to achieve mass-lumping on the matrix
Ay, we can then eliminate the unknown Xj(which implies important savings in memory requests especially in
the 3D case) and write system (9) as the second order system in time :

Find (Vi,An) € L2(0,T;IRM) x L?(0,T; R™®)  such that :

&2V, . . dF,
(10) Ch" + Budy BiVi — Budy ' Suhs - &
—Sr A BV + Sk A, ShA =0

We will describe in section 5 an appropriate choice for X, M}, (corresponding to the lowest order element of
a new family of mixed finite elements) which allows to obtain mass-lumping for Ay.
3.4 Total discretisation

For the time discretisation of problem (10) we restrict ourselves to the classical second order centered finite
differences approximation :

Find (V;"*', A7) € R™ x R™* such that :

n41/2 n—1/2
Fy —F, i
At

(11) Ch th-l-l _ thn + th—l

INE + BhAngZth - BhA,lehA,T{ =

SrAISEAY = SrA'BRVE (i)

INRIA
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This is an explicit scheme only if C}, is also a diagonal matrix, which, in practice, is not difficult to achieve. This
comes from the fact that M} is a subset of L? and therefore can be constructed with discontinuous fonctions
and from now on we assume that C}, is diagonal . The additional terms, coming from the coupling with the
fictitious domain method are the terms containing the unknown A}. This means that, without topography, we
would have to solve

| AR A 7A FrHY2 _ pret/?
h A;‘LZ h 4 C;lBhAngEth — C}jl h A h

(12)

which can be reinterpreted as a finite difference scheme (see section 6) and is comparable from the computational
point of view to the classical finite difference scheme. Therefore, the additional cost for taking into account the
topography thanks to the fictitious domain method, compared to the classical finite difference scheme, is due
to the system (11)-(ii). The matrix of this system is of small size (number of degrees of fredom on I'g) and
independent on the step m, so that it can be factorized once and we only have to perform a forward backward
solve at each time step. Note that the term A} in equation (11)-(i) can be interpreted as an additional source
term located on the boundary.

Remark 4 e System (10) has the advantage of being a second-order system in time : it is easier to get higher-
order discretisation in time, using the modified equation technique (see[14]), than for the first-order system.

e The invertibility of the matriz Sy A, " Sy of System (11)-(i) (and thus the well posedness of ((11)) is insured
by the inf-sup condition already mentioned before (needed for the convergence of the method).

An important point is that the CFL stability condition is the same for (11) than for (12), i.e. for the
discretized problem posed in the whole rectangle C' without topography, which means that the use of the
fictitious domain method does not affect the stability condition. Actually, assume that there is no source term
(i.e., F =0), then we can prove that, for the solution of (11), the following quantity is conserved

n+1 n n+1 n

Ent1/2 =
e N v

)+ (Budy ' BVt vi)

which is exactly the discrete energy of (12) (see[12] for more details).
We will see in section 6.2 what is the stability condition for our particular choice of spaces X; and My, in
a case of an homogeneous, isotropic elastic medium.

4 A new absorbing layer model (P.M.L)

A new absorbing layer model, the Perfectly Mached Layer model was introduced by Berenger[10] for the 2D
Maxwell problem. This model has astonishing properties: the reflection coefficient at the interface between the
layer and the free medium is zero whatever are the frequency and the angle of incidence. This model can be
extended to general first order hyperbolic systems, and in particular to the first order velocity-stress formulation
(see[13] for more details). In this section, we explain the basic principles of this model in the general case of a
first order hyperbolic system and then we will extend this model to elastodynamics.

4.1 The PML model for a general first order hyperbolic system
Consider the following first order hyperbolic system, posed initially in the space IR?:
Ou Ou Ou

= A—— B— m
(13) ot = 4om T Poy vERT @

u(z1,2,0) = u’(z1, 22) (b)

Suppose that the support of initial data «° is in the left half-space, we would like to substitute problem (13) by
an equivalent one posed in the left half-space. The basic principle of the PML model is to couple the equation
in the left half-space with an equation in the right half-space such that there is no reflection at the interface

RR n° 3889



10 E. Bécache, P. Joly and C. Tsogka

and that the wave decreases exponentially inside the layer. We first introduce the following system

(u=ul +ut,
ul _ pou
(14) \ ot Com
Out Ou
ou— _ 4 9%
\ ot 6.’1717

where the index || (resp. 1) means that we keep only the derivatives parallel to the interface, i.e. the z,-
derivatives (resp. orthogonal, i.e., the x;-derivatives). Is is easy to see that system (14) implies (13)-(a).

Secondly we define a new wave, v, solution of (14) in the left half-space and satisfying a new system in the
right half-space, involving a damping on the normal component :

(v =0l + 0t
ol ov
9 _ gyl
(15) < 8t 61‘2,
vt N v
ov —49Y
| 5 + d(x1)v 92y’

where the damping parameter d(x1) is positif and satisfies :

d(z1) =0, Vi <O0.
Now, consider a plane wave u, solution of (13)-(a), i.e., on the form :
(16) w(z1, T2, t) = ug e {R1T1Hk2a—0l)

where ug satisfies the dispersion relation :
(17) ug + %Auo + %Buo =0.
We have the following theorem :
Theorem 1 There ezists a unique plane wave, v, solution of system (15) on the form
(18) v(21, Ta, 1) = ug e F1T1Hkaz2—wt) pa(@)
satisfying :
o v =w in the left half-space ©1 < 0 (no reflexion)
o v is damped in the right half-space

o the damping coefficient in the absorbing layer is

[v@L22,8) | _ agen — exp (—%/ d(f)dﬁ) ; 21>0
0

| u(z1,72,1) |

Proof: See[13] W

Remark 5 Note that the damping is exponentially decreasing, depending on the direction of propagation of the
wave: it decreases very fast for a wave propagating normally to the interface and more and more slower as the
direction approaches the parallel to the interface.

In practice, we introduce a boundary at z; = § to bound the layer, with a Dirichlet condition and we solve
(13)-(a) in the left half-space and (15) in the right half-space. This new boundary produces a reflexion, but,
since the wave decreases exponentially in the layer, the reflexion coefficient becomes quickly very small. This
coefficient depends on the choice of d(x1) and on the size § of the layer. One has interest to choose a large
enough layer in order to get a small reflexion coefficient, but not too large in order to avoid to increase too
much the additional computational cost.

INRIA
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X2

dbx,

o] Xy

Figure 3: The damping parameter

4.2 Application to elastodynamics

Now consider the 2D elastodynamic problem written as a first order hyperbolic system, the velocity-stress
system :

g@ —dive = 0 inQ
(19) %
AE —e(v) = 0 inQ

We use the usual identification of tensor o with the vector (still denoted by o) defined as
o1 =011 ; 02 =02 ; 03 =012,

We can write (19) in the following matricial form :

ov Oo Oo
— =D*—+DI— inQ
0 2%5¢ oz, omg ™
Oo ov ov
A— =F+t— 4+ EIZ— inQ
ot o0, T omy ™
with
00 10
0 0 1 1 00
(21) Dl = ; Dt = s Bl=l0 1] ; E*t=]0 0
010 0 0 1

Applying the previous result, we get the following system in the Perfectly Matched Layer

(v =0l 40t oc=ol +ot,
M_Dlla_o %_,_d(x )Ul_Dla_U
(22) { %0t = ony o A
doll v ot v
A— =E| A—— Agt =E+—
\ (9t 61'2 ’ 6t + d(xl) g 5371

5 Construction of the ()1 — @y mixed finite element

As explained previously (see section 3.2), in order to achieve mass lumping on matrix A, we have to find
appropriate finite element spaces. As this is independent of the presence or not of the boundary I'g, we consider
the problem without “obstacle”, i.e. problem (4), and we assume that  is the square ]0,1[x]0, 1[. We denote
by 75 a regular mesh of Q2 composed by squares (K) of side h = 1/N. Our aim is to use a space discretisation
method that can lead after time discretisation to an explicit scheme. To do so, we are led to construct a new
finite element method which fits our aim. For simplicity we present the lowest order element, so-called Q1 — Qo
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12 E. Bécache, P. Joly and C. Tsogka

element, but this construction can be easily generalized to higher orders and to the 3D problem[8, 9]. We
consider the approximate spaces:

My, = {up € M/VK € Ty, up |k € (Qo)’},

Xy = {(Th S X/VK €Ty, on |K S (Q1)2},

X}.SL = {U'h S Xh/as(ah) = 0}

In this case the approximation problem, associated to the mixed velocity-stress system for elastodynamics, can
be written in the following form :

Find (op,vs) : Rt — X, x M}, such that :

d
(23) aa(ah(t)aTh)+b(Thavh(t)) =0, Vry € Xj,

d

ac(vh(t),wh) = b(on(t), wn) = (f,wn) , Ywp € Mp,
Remark 6

e One could think that the most natural choice for the construction of the space Xy would be the lowest order
Raviart Thomas element[21, 11] RT}q):

X ={on € X/(on1,0n2) € (RTio))*},
RT[O] = Pl,U X P(],]_.

The difficulty is that the space X1 N X* is too small and thus it cannot be considered as a good approzimation
space of X* : if op is a symmetric tensor in X,?T, then o125 is necessarily constant! (o125 is linear in x2 and
constant in x1 while oo1 is linear in x1 and constant in x2).

o Another approach, which was developed for the stationary problem, and permits to avoid this difficulty consists
in imposing the symmetry of the stress tensor as(o) = 0 in a weak way and introducing the corresponding
Lagrange multiplier. Following this approach for the transitory problem, we can show that the continuous
problem (3) is equivalent to :

( Find (0,v,7) :IR" = X x M x L such that :
%a(a(t), 7) 4+ b(7,v(t)) + d(r,~v(t)) =0 Vre X?
<
9 c(w(t),w) — blo(t), w) = (f,w) Vue M
\ d(o(t),p) =0 YueL

where 7y corresponds to rot(v)/2, L = L?(Q) and the bilinear form d(-,-) is defined by

d(o, 1) =/Qas(o) wdz, ¥(o,pu)€ Hx M.

It is from this type of formulation, or more precisely from its equivalent for the stationary problem, that PEERS
element was constructed[1]. We did not follow this technique because it does not lead to an explicit scheme after
time discretisation.

e Our space X is constructed from the second family of mized finite elements proposed by Nédélec[19]. It
presents two advantages, the first one concerns the symmetry of the stress tensor which is taken into account
in a strong way (that means the symmetry is included in the approximation space), the second one concerns the
obtention of an explicit time discretisation scheme using mass-lumping techniques.

Strong symmetry: Consider o, € X, we can remark, using the fact that the mesh is regular, that relation
012 = 021 implies that o2 is continuous in  (namely it belongs in the approximation space of H L by @, finite
elements), moreover the vector (o11,092)! is now in H(div): o1 is continuous in the z; direction and disconti-
nuous in x5 and o9y is continuous in z2 and discontinuous in z;. We can easily show that these properties are
consequences of the strong symmetry condition.

Mass lumping: In order to obtain an explicit time discretisation scheme we need to use a mass lumping
technique for the approximation of the mass matrix associated to the bilinear form a(op,7,) (the reader can
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verify that the matrix associated to c¢(up,vy) is already diagonal in the usual basis of My). We first remind
that the basic principle of mass-lumping consists in approximating the integrals appearing in the mass matrix
using a quadrature formula of the form:

[ faa Tk = 3 £

i€EK

where M; are the quadrature points and w; the associated weights. The key point is then to find an adequate
quadrature formula which will lead to a diagonal mass matrix. For instance, if we wanted to approximate the
scalar acoustic wave equation with the classical (J; element, the integrals appearing in the mass matrix would

be / w;wjdx with w;(M;) = 6;; the Lagrange basis functions and M; the nodes of the mesh (summits of the

elements). One can easily check that the use of the following quadrature formula:

h2
(24 [taamrn=" X s0n viecow)
k M summits of K
leads now to a diagonal mass matrix. In our case, following the same principle, we are led to approximate the

mass matrix a(op, 1) by :

an(on,m) = Y Ix(Aoy : 7h)
KeT,

where the use of the quadrature formula (24) on K leads now to a block diagonal mass matrix. Each block is
associated to a node of the mesh and its dimension is equal to the number of degrees of freedom at this point
(that is 5, see figure 4-right).

We present in figure 4 the degrees of freedom in the new element. In figure 4-right we consider a node of

d g
Oy )
A A
> s (0} n
b b 11
0 y 01 i .
Or
1 12
® ®0,=0, 5 ? ® ? 5
O-lhl vz o " 92 > %2
11 o b
11

Figure 4: Degrees of freedom for the @1 — Qp element.

the mesh and we present the degrees of freedom (corresponding to the stress tensor) that are associated to this
node.

Remark 7 In a recent paper[8], the scalar version of this element is presented, for the approzimation of the
scalar anisotropic wave equation. In particular, it is explained why the use of Raviart-Thomas elements do not
allow to achieve mass-lumping while this element does. For the analysis of this element, the difficulty is that
it does not enter the classical Babushka-Brezzi theory (compared to the choice RTjg), Qo usually used for the
pressure and velocity, we have enriched the space of the pressures). That is why we have proposed a modified
abstract theory which permits to get nonclassical error estimates. However, the theory developed there can not
be directly applied to the elastodynamic problem, it has to be again modified, see [9].

6 Stability and dispersion analysis of the (); — )y element in the case
of a homogeneous, isotropic medium.

In this paragraph we will study the new lowest order mixed finite element method in the case of an homogeneous,
isotropic medium. In this case the discretisation scheme obtained using the new finite element, can be interpreted
as a finite differences scheme and thus can be analyzed by the usual techniques: dispersion and stability analysis.
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14 E. Bécache, P. Joly and C. Tsogka

6.1 Interpretation as a finite difference scheme

We will describe here the numerical scheme obtained after space discretisation of the problem (23) in a regular
mesh. We can see that we have a periodicity of two types of nodes (cf. Fig 5-left). The points 1 and 2 will be

0, d ng
(F] +& (i+1,j+1)
— H—
b b
j 1 a2 011 0'11
1A
h P+= = h
011__1, ’ 2 =011
i i+1,j
in],d 59 (i+1,)

‘ (o)
i 22 22

Figure 5: Left: The mesh. Right: Degrees of freedom

respectively indexed by (4,7) and (¢ + 1/2,5 + 1/2). At each point of type 1 corresponds 5 degrees of freedom,
see Fig. 5-right : ol 0%, 0%,, 09, and o12. At each point of type 2 corresponds 2 degrees of freedom, the two
components of the velocity: v; and ve. After some calculations (we do not enter here into details), System (23)
can be rewritten as a finite difference scheme, and the unknown ¢ can be eliminated. We end up with a second
order in time scheme on the velocity, that can be written in a matricial form:

B2V V])ZDZ,I + przu (Vp2 - V2D,
(V; —V})Dy, Vp2D(21,2 + VfD,zzm
where V' = (v1,v2)" and D}, 1 f(i,j) = aD1 f(i,j — 1) + (1 — 2) D} £ (i, j) + @D f(i,j + 1),
D? being the discrete operator (classical second order, centered, finite differences operator):

fli+1,5) =20, 5) + f(i —1,5)
h2

D3 f(i,5) =

We can remark that (25) defines a general class of second order numerical schemes, depending on two
parameters a and 8 with (0 < a <1/2, 0 < 8 < 1/2). In particular, @« = 0, 8 = 0 corresponds to the finite
O 20 p-liom

avp o PTgene
@)1 — Qo mixed finite element scheme. Note that, for the new scheme, a depends on the Poisson’s coefficient

differences scheme, o = 1/6, 8 = 1/6 to the @; finite elements scheme and a =

= ———— which means that it is adapted to the considered elastic medium.
20+ p)

Remark 8 System (25) is an approrimation of the elastodynamic problem, written in displacement:

1/26—2 +V26—2 (V2 -V2) A
&2V . P Ox? * Ox3 P $ 7 01101
(26) W = KV wzth K = 62 62 82
2 _ 12 27 27
Vy =V )(?xl@mg Vo oz3 +Vi Oz?

6.2 Stability condition

For the time discretisation of problem (25) we use the classical second order centered finite differences approxi-
mation and get the total discretized scheme:

Vn-l—l —yn + Vn—l

(27) AR

=IK,V"
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The stability condition for this scheme is:

2
AR K _
4 <
In order to calculate ||IK,|| we will use the Fourier transform in space :
A 1 ; :
Vf(x1,22) € L'(IR?) we have : f(ki, ko) = 72 Jre f (21, 22) exp~iFre1+k222) go g,

From Parseval identity, we get
(28) Il = sup [Ka(B)| = max ~ sup (X, Xa)

i =02 (X1,X2)€0,1]?

where )\;(X1, X2), i = 1,2 are the two eigenvalues of the symmetric matrix ]KAh, whose components are expressed

in terms of Xy = sin%%) and X, = sinz(k;—h) and are:

(— 1 A
Kp[1,1] = 3 (V7 X1(1 — 40X5) + 4V X5(1 — 48X1))

— 1
(29) $ Ky[2,2] = 73 (4V) X5(1 — 4aX1) + 4V X1 (1 — 48X5))
— 4
K,[1,2] = 5 (V7 = V) VX1(1 - X2)/Xa(1 — X1)
Theorem 2 The scheme (27) is stable under the CFL condition
VeroAt ) h »
——X<1 = — (X, X))/
(30) p o <L with Vory = 5 (max oA Xi(X1, X))

The value of Vorr depends on parameters a and 3, see Fig 6:
o In domain I: Vo = \/VI',Z +V2 - 4(04Vp2 +BV2).

o In domain II, the value is constant: Vopr = Vp.

“(wa- ) =
=(a- )

Figure 6: Stability Domains

Proof: We only indicate the main steps of the proof (for more details, see[22]).

e We first study the characteristic polynomial and show that, if the maximum of the greater eigenvalue is
reached in the interior of the square, then it is on a point located on the diagonal X; = X5,. In other terms,
this maximum is reached either on the diagonal X; = X5 or on the border of the square [0,1]? .

e The expressions of the eigenvalues are the following, for ¢ = 1,2

Ai( X, Xp) = = % [(sz + BV2)X1Xs]
(31)
i%(vzf - Vsz)\/(Xl — X5)* +4(Xy — X7)(X, - X3)

RR n° 3889



16 E. Bécache, P. Joly and C. Tsogka

We then prove that the maximum of the greater one is necessarily reached at one vertex of the square and get
the result. W
For the finite differences scheme (o = 3 = 0) the maximum is in domain I, VZE, = \/ V2 + V2, while

for the (); finite elements as well as for the Q; — ()9 mixed finite element the maximum is in domain II,

VEL, = VS 9 =V, < V&R, and therefore is better than with finite differences. In the following, we will
call CFL ratio the quantity acpr, = At/h and we denote by af2, . aglpL = ag},TLQO the maximum allowed by

the stability condition for each scheme (i.e., a5, = 1/VEE, <a@t, =1/VhL)-

6.3 Dispersion Analysis for the total discretized scheme

For the continuous problem, the dispersion analysis consists in searching plane waves solutions of system (26),
i.e. waves in the following form:

(32) U="U,expi(kiz1 + kows —wt), U, €R?, k= (k,ks) € R?, welR

where k is the propagating direction and w/k the phase velocity. To be a solution, U has to verify the so called
dispersion relation :

R R V2 + V2K (V2 —VE)kiks
(33) w?U, =KU, where IK=
(V2= V2kky V2R + V2R
Equation (33) implies that w? is an eigenvalue of IK and U, is the associated eigenvector. Therefore, we have[4]

w% = ‘/ﬁ(k% + kg)a Ug = (kth)

(34) B =V 4 K2), UZ=(—ks k)

where w; corresponds to a Pressure wave, propagating with the phase velocity V, = w1/ |k| and w corresponds
to a Shear wave, propagating with the phase velocity V, = wo/ |k|. Phase velocities V,, and V; are independent
on w, we say that the elastodynamic equation is non-dispersive. To study the dispersion relation of scheme (27)
we search particular solutions of (25) in the form:

(35) Uij = Upn expa(krat + ko) —wt), Uon € R, k= (ki,k2) € R?, weR

We can prove the existence of numerical waves P and S which are dispersive. The dispersion relation for scheme
(27) is:

4 5 Atw —
A sin?(—5 = ") Uo = KpUon

where I}, is the symmetric matrix defined by (29). We then obtain for i = 1,2

4 5
(36) Az St (

Atwi
2

) =Xi(X1,X5), (X defined in (31))

We set k = (k1, k2) where the components of k are related to the angle of propagation ¢ by ky = |k|cos¢, ks =
w

|k|sin¢. Let V3, = ﬁ the numerical phase velocity. We introduce the adimensional quantities g, (resp. ¢s)

which represents the ratio between the numerical and the continuous phase velocity of the P (resp. S) waves :

wl w?
37 g =—1:¢q h
(37 P =TV, e T T,

1 |klh . . .
If weset K = N on with NV the number of points per wavelength, we notice that g, (resp. ¢s) depends on
T
A
the discretisation parameter K, on the angle of propagation ¢, on the Poisson’s coefficient v = m and
n

on the step size At (or equivalently on the CFL ratio acpr). We compare the dispersion of the Q1 — Qo mixed
INRIA



Fictitious domains, mized FE and PML for 2D elatodynamics
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Figure 7: Phase velocity, v = 0.1.
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Figure 8: Comparison between the worse curves for » =0.1 and v = 0.4

finite element scheme (red), the dispersion of the classical ) finite element scheme (blue) and the dispersion
of the classical finite difference scheme (green). For each scheme, we plot ¢, and ¢ with respect to K, and this
for several values of the Poisson’s coefficient, for several angles and for the maximum value of the CFL ratio
acorr allowed by the stability condition. Actually, we can check that the dispersion error for P waves decreases
as ag g increases, we have thus chosen to represent the best curves for the dispersion of P waves. We present
in Fig. 7 the curves obtained for » = 0.1, and for the angles ¢ = 0,15,30 and 45 degrees, but the observations
we do here are the same for other values of v. Concerning P waves: the Q1 — Q¢ and )1 elements have their
worse dispersion for the diagonal direction ¢ = 45 and become better when the direction becomes parallel to
the grid axis ¢ = 0, and it is the contrary for the FD scheme. For S waves, the Q1 — Qo and @)1 elements have
again a monotone behavior with respect to the angle, which is inverted compared to P waves, i.e., they have
their worse dispersion for ¢ = 0 and become better for ¢ = 45. On the other hand, one can not conclude for
the FD scheme, since the results change depending on the angle and on the value of v.

We represent in Fig 8 the “worse” curves for each scheme, for two values of v. We can see that, in all cases,
the new finite element Q1 — Qo is always better (or identical) than the @Q; element (with the same CFL ratio).
The comparison with FD is not so clear for P waves: if we fix the number of points per wavelength, the FD can
become in some cases better than the Q1 — Qo (e.g., v = 0.4, P waves) but with a smaller CFL ratio, i.e. it is
also more expensive. On the other hand, the @1 — Qo always gives a better (or identical) dispersion than FD
for S waves, which are slower than P waves (V; < V) and thus more difficult to approximate.

In conclusion, if we consider both stability and dispersion, our scheme has a better behavior than Finite
Differences and than );. This was not apriori expected since this element was designed for different purposes
(strong symmetry and mass lumping).

7 Numerical Results

We will present in this section three numerical experiments. In the two first examples, without topography, we
want to validate the lowest order new mixed finite element and the absorbing layers in isotropic and anisotropic
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18 E. Bécache, P. Joly and C. Tsogka

media.The last example shows the efficiency of the coupling with the fictitious domain method in a heterogeneous
medium. For the time discretisation we use the classical centered finite difference scheme of 2nd order. In each
case, we solve the elastodynamics problem with zero initial conditions, and with an explosive source located at
point S = (zs,¥s),

f(z,t) = F(t)g(r)
where

Ft) = —2m2 f2(t — to)e~™ Fo(=10)* if ¢ < 2ty
0 if t > 2ty

(38) 1 Ve 1
to=—, fo=—+
fo h Ng
Ng is the number of points per S wave length,

is the central frequency,

and g(r) is a radial function :

- T2 s —

g(r) = (1 — F) 1g, €
r=VE- TR G-y a=5h,

where 1p, is one on B,, the disk of center S and radius a, and zero elsewhere and € will be precised in each
experiment.
The absorbing layer model is characterized by the length § of the layer, and the damping parameter (see

figure 9-right)
1Y\ |3V,
loe [ = )| 2¥2
8 <R> 26

and R is the reflection coefficient predicted by the theory [13], § and R being defined in each case. The domain
C is meshed with N x N squares of edge h.

(39)

T

5)2’ with do =

h
The time step is computed following the CFL condition At = 7

P
Remark 9 In a heterogeneous medium, we choose

1)\ |3maxV, _h
os ()] 255 and M=

minVsi
h Ng’

do =

fo=

where the max and the min are the extremal values of the velocities on the whole domain.

7.1 Rayleigh waves and PML

In the first example we consider the elastic wave propagation problem in the homogeneous isotropic half plane
(y < 0) where the source point S is near the free surface. We have chosen this problem in order to test
the efficiency of the P.M.L model on the Rayleigh wave, which is particularly difficult to absorb. In order to
approximate this problem we consider a bounded domain C = [0, 100] x [—100, 0] with absorbing layers (PML)
on the artificial boundary I'4 (see Figure 9-left). The velocities in the medium are V,, = V5, Vy, = V2. The
uniform grid on C' is composed of squares of edge h = 0.5. To complete the characteristics of the source, given

in (38) and (39), we choose € = (w, y—_ys) and the point source § = (50,97). The length of the absorbing

layer is 6 = 10h and the theoretical reflection coefficient is R = 0.001. In Figure 10, we represent the solution
of this problem at different times. We can see two cylindrical waves propagating with two different velocities
(Pressure wave and Shear wave) and we can also observe the Rayleigh wave propagating along the surface with
a velocity roughly equal to the velocity of shear waves. We can remark that P.M.L model absorbs efficiently the
cylindrical waves P, S and the Rayleigh wave. More precisely the reflection coefficient is in this case R = 0.001:
this is the value predicted by the theory, and looking carefully on the figures (change of scale), we can check
that this is also approximately the numerical value.
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Figure 10: The norm of the velocity (1/v? + v3) at time ¢ = 13.44s on the left, ¢t = 26.88s on the right

7.2 Homogeneous, anisotropic elastic medium.

We consider here a homogeneous, anisotropic, elastic medium: the apatite. Again the computational domain is
a square C surrounded with absorbing layers on all four boundaries. The characteristics of the problem are :
N =240, h = 0.33m, Ng = 10. We use here a z-directional point load source, € = (0,1). The source is located
at the center of the frame S = (40m,40m). The length of the absorbing layers is § = 5h and the reflection
coefficient R = 0.01. The density of the material is p = 3.2gr/cm?® and the matrix of elastic coefficients is

16.7 6.6 0.
c=| 66 14. 0. 10t
0 0 6.63

In a 2D anisotropic medium, there are two waves propagating, the quasi pressure wave (QP) and the quasi shear
wave (QS). Before giving the numerical results, we present in Figure 11 the theoretical wave fronts curves for
the Apatite and the amplitudes of the QP and QS wave for a a z-directional point load source. In the following

Apatite P wave S vave

0 45 10 05 00 05 10 15
wwwwwww

Figure 11: Left: Wave front curves for the apatite.Right: amplitude of the P wave (left) and S wave (right)

figures, we represent the solution of this problem at different times.

We can remark that the wave front curves and the amplitude of the Quasi Pressure and the Quasi Shear
wave computed numerically show the characteristics predicted theoretically : the Quasi Pressure wave is weaker
then the Quasi Shear wave, the amplitude of the Quasi Pressure wave is weaker in the x-direction while the
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Figure 12: |@] = y/u2 + uZ at t = 11.67 s, 17.51 s and 23.35 s

amplitude of the Quasi Shear wave is weaker in the y-direction.

7.3 Coupling with the fictitious domain method: the case of an heterogeneous
elastic medium with complex topography

We consider here, the elastic wave propagation problem in a heterogeneous, isotropic medium with complex
topography. To approximate this problem we consider a bounded domain C = [0,80] x [0, 80] with absorbing
layers (PML) on the artificial boundary I' 4 (see Figure 13). As we can see in figure 13 the mesh on the domain
C is independent on the mesh on I's. The heterogeneous elastic medium considered here is characterized by

Profil Vp (=1.6 Vs)

a2l

g

L model

ozo!

v,
Figure 13: Left: The two meshes. Right: The velocity model for the heterogeneous medium, mapr =2.1and
inV,
Vp = 1.6V,.
. . . max V), . .
the velocity model presented on Figure 13-right, we have e 2.1 and V}, = 1.6V;. For the discretization
min V,

we take V, and V; piecewise constants (one value per element). The step of the uniform grid on C' is h = 1/3,
and the number of points per S wavelength (for the minimum S velocity, see remark 9) is Ng = 10. The source

is determined by € = (x _sz Y _Tys) and the point source is located at S = (36.67,56.67). On the free surface

T's we use an 1D irregular mesh. The length of the absorbing layer is § = 10h and the damping parameter
is choosen according to (40) and Remark 9 with a reflection coefficient R = 0.01. In the following figures, we
represent the norm of the velocity at different times. We can observe that the wave fronts are not circular,
because of the heterogeneities, and the energy is localized in some regions. Although the phenomena are more
complicated than in a homogeneous medium, one can see P and S waves reflected by the topography (the P
wave being faster than the S one), and one can also see a diffraction by the wedge. There is a surface wave
propagating along the topography, which is again very well absorbed by the PMLs.

8 Conclusion

We have presented a new method for solving elastodynamics problem in anisotropic, heterogeneous media, with
topographies of complex geometries. The numerical results, obtained with the lowest order element, show its
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Figure 14: |id] = {/u2 + uZ at t = 19.35 5, 32.25 5,45.15 5,70.95 s and 96.75 s

efficiency in several situations. Let us mention that this method can also be applied in media containing cracks
(see[6]). The new elements can be extended in a natural way to higher orders[22] and to 3D. A forthcomming
paper is in preparation for the 3D case, where we treat in particular the additional difficulties linked to the
interaction between the boundary mesh and the volume mesh, which involves much more geometry than in 2D.
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