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Schémas numériques et estimations d’erreur pour le
ferromagnétisme

Résumé : Nous proposons dans ce rapport une méthode de type éléments finis adaptée au
probleme du ferromagnétisme. Ce probleme résulte du couplage des équations de Maxwell
instationnaires et de la loi non linéaire dite de Landau-Lifschitz-Gilbert. En nous appuyant sur
de la décroissance de certaines énergies, nous montrons la convergence de la méthode pour des
champs électromagnétiques suffisamment réguliers. Nous vérifions également que les familles
d’éléments finis que nous avons construites respectent les principales propriétés du probleme
continu. Quelques exemples numériques concluent ce rapport.

Mots-clé : Equations de Maxwell — loi de Landau-Lifchitz-Gilbert — éléments finis — estima-
tions d’erreur.
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1 Introduction

In order to model the electromagnetic behavior of a ferromagnetic material, the basic Maxwell
system must be augmented by an equation describing the influence of the ferromagnet. We
suppose that the ferromagnetic material occupies a bounded domain Q C R3. The electroma-
gnetic field in €2 is described by four vector functions of position and time: E, the electric field,
H the magnetic field, B the magnetic induction and M the magnetization. The magnetic
variables are related as follows:

B = po (H + M) (1)

where g is the magnetic permeability of free space.
The standard Maxwell equations are satisfied throughout €2 so that

oFE
EQE—VXH = —J (2)
0B
i E = 0.
5 + V x 0 (3)

Here ¢, is the permeability of free space and J is the current density. We shall assume a
non-conducting ferromagnet, but a conducting ferromagnet can also be modeled by adding an
Ohms law term. This does not complicate the numerical algorithm (variable € is also simple to
implement).

To complete the system of equations, we need an equation for the magnetization M. This
is provided by the Landau-Lifchitz-Gilbert equation (denoted LLG in this paper). This states
that

aé\f -- f‘oﬂ (HT(H,M) x M +a% x (Hp(H, M) x M)) , (4)
where 7 is the gyromagnetic factor, « is the damping constant, and Hr(H, M) is the total
magnetic field in the ferromagnet. This total field arises from a number of contributions. The
magnetic field is augmented by a given static field H,. However ferromagnets also have an
anisotropic behavior. There is a preferred direction, called the easy axis, in the direction of a
vector p. Let P(M) denote the projection of M on the plane perpendicular to p so that

P(M)=M — (p- M)p.
Then the field of anisotropy is proportional to P(M). Thus
H;(H,M)=H+ H,—- KP(M)

where K is a constant characterizing the material. In this paper we shall assume K to be
independent of position, but in reality K might depend on position. We neglect one further
contribution to the total field, called the exchange field. For the applications we have in mind
which are mainly modeling radar absorbing materials for stealth applications, this field is not
important. Examples of materials of this type are ferrites or garnets which are used in the
microwave domain as shifters or circulators for example. For a more complete discussion of the
model, see for example [1, 8], and for a models including the exchange field see [20].

An important consequence of the LLG equation is that the the norm of M is independent
of time. To see this, at least formally, we take the dot product of the LLG equation (4) with
M and conclude that

20 M@0 = 2 @) M1 =0.

201 ot INRIA
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Thus, for almost every & € €2, we have the following conservation of the norm of M:
|M(z,t)| = [M(z,0)|. (5)

Using the equations (1), (2), (3) and (4) and eliminating B gives us the following system
which we call the Maxwell-LLG system. The electomagnetic field (E, H, M) satisfies

OFE
EOE—VXH = —-J (6)
oOH oM
gy TV XE = —po—gs (7)
oM ~ M
= = L _(Hy(H M)xM+a——
5 1—|—o¢2< T( , )>< +a|M‘><(HT(H,M)><M)> (8)
(9)
in ) where

Hy(H,M)=H+ H,— KP(M).

For simplicity, we shall assume that the boundary of €2 is perfectly conducting. In fact, when
we discuss numerical results, we will show how to incorporate impedance boundary conditions.
Thus

vxE=0onTl =00 (10)

where v is the unit outward normal to ).
Finally, we assume that E, H and M are specified at time ¢ = 0. Thus

E(t=0)=E, H(t=0)=H,, and M(t =0) = M, (11)

where F,, H, and M are given functions. For physical reasons, these initial fields must satisfy
the constraint that

V- (Hy+My)=0inQand v-(Hy+ M;)=0o0nT.

This ensures that B is divergence free.

In this model, the ferromagnet occupies exactly the region of space where M # 0. So,
because of the pointwise conservation of the norm of M, the extent of the ferromagnet is
determined by the initial distribution of magnetization.

The Maxwell-LLG system has been studied by Joly and Vacus [5, 7, 6] who have established
existence and uniqueness for the system in a variety of settings, and have analyzed linearizations
of the Maxwell-LLG system. In [5], Joly and Vacus show how a finite difference scheme can be
used to compute a solution of the Maxwell-LL.G system in 1D, and they prove convergence of
the scheme. This scheme can also used in 2D and 3D [6]. Apart from this work, all the work
on discretizing the Maxwell-LLG system has involved special cases (o = 0, [10, 18, 21, 3]),
linearization or saturation assumptions [9, 10, 18, 17, 16, 3, 18, 10]). In this paper we will show
how to construct 2D and 3D finite element methods for the full problem. We shall also provide
some preliminary analysis of the method. The analysis is based on the work of Monk [11], but
the analysis here is more difficult since the problem is non-linear. In particular we show how a
certain class of finite element methods can be used to approximate the Maxwell-LLG equations
while preserving energy decay and the norm of M. This allows us to prove error estimates.

RR n°3169
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2 Preliminaries

In order to write a variational problem suitable for finite element discretization we need some
notation and function spaces. Let

(u,v)z/ﬂu-vdV

and ||ul| = \/(u,u). We use the usual notation for Sobolev spaces of scalar function so that
H*(£2) denotes the space of functions with s square integrable derivatives on {2 equipped with
the norm ||.||s (so ||.]lo = ||-||). In addition, recall that

Hy(cur; Q) = {u € (Ly(2))* | Vxu € (Ly(Q)* and v x u =0o0nT}.
In order to simplify notation we denote by F'(H, M) the right hand side of (7) so that

y
1+ a?

F(H, M) = (HT(H, M) x M + a2 x (Hy(H, M) x M) ) (12)

| M|

To obtain a variational scheme we proceed formally to multiply (6), (7) and (8) by test
functions and integrate over 2. Then integrating the curl term in (6) by parts and using the
boundary data (10) we obtain a suitable problem. In particular, for a given final time 7" > 0,
we seek

E ¢ C(0,T; Hy(curl; Q)) N CH0,T; (Ly(R))?)
H € CY0,T;(Ly(Q))?)
M € CY0,T;(Ly(Q))%)

such that
<%E,¢>—(H,Vx¢) = (J,¥) Vi € Hy(eml; Q) (13)
() +(VxBo) = ~(5M0)  Voe (@) (14)
(%M,g> — (F(H,M),6) Ve e (Ly(Q)) (15)

subject to the initial conditions in (11). As mentioned in the introduction, the existence
and uniqueness of solutions to the 1D Maxwell-LLG equation has been studied by Joly and
Vacus. Here we shall simply assume the existence of a unique solution to the above variational
problem (we shall prove uniqueness shortly) in the indicated spaces. Later, when we prove
error estimates, we shall make further smoothness assumptions on the solution sufficient for
error estimates to hold.

The error analysis of the finite element method is based on a simple continuous dependence
result for the Maxwell-LLG equations. Next we prove this result under the assumption that
the Maxwell-LLG equations have a unique and bounded solution. Suppose that (E;, Hy, M)
and (E,, Hy, M) are two solutions of the Maxwell-LLG equations. Let

e = EQ—El
h - HQ_Hl
m = MQ—Ml.
INRIA
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Then we define
E(t) = |lell* + |k]? + |m]]*.

We prove the following result:

Theorem 2.1 Suppose H; and M, i = 1,2 are bounded functions in space and time. Then,
for0<t<T,
E(t) < E(0) exp(ut)
where
_29(1+a)

=g IHsllwor +[1Milloar + [ M:llcor + [ Hallwr)

Remark: Note that we have used a constant p that does not depend symmetrically on M;
and H;, 1+ = 1,2. This allows us to obtain a discrete version of this result in which the
corresponding quantity is bounded independent of the mesh.

To prove Theorem 2.1, as well as the error estimates later in the paper, start by proving
the following the following geometrical lemma concerning F' (defined in (12):

1
Lemma 2.1 For all vectors (Hs, H1, Hy, M1, M) € (R3)4, we have, with 7' = %;
«
|F(Hy, My) — F(H{, M,)|
< 7 (JH|+ [My] + [M| + |Hy|) (|My — M| + |Hy — H,y) (16)

Proof. Since
Hrpy x My — Hpy x My = Hrpy x (My — M)+ (Hry — Hry)

we have
|HT2 X My — Hpy % Mﬂ < |H2HM2—M1| + |M1HHT2_HT1‘

and the reader can easily see that the main point of the lemma is then to prove that

M M
—2 X (HT2 X Mz) -1 X (HTl X M1) < ‘H2HM2 _Ml‘ + |M1||HT2 - HT1|
| M| | M, |

This is done in appendix at the end of this paper.
Finally we conclude the estimate by noting that

and
|Hp(H,,M,) — Hr(Hy, M,)| < |H; — Hy| + |M; — M,|.

.From this argument, we see that we could also take as Lipschitz constant

1+«
C(H,, H My, M) = T8 w0y (B 4 B+ M) ()
v(1+ ) : . .
and that Trar (|[H| + M|+ |M,| + |H,]) is also a possible choice. [
o

RR n°3169
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Proof. [of Theorem 2.1]. We note that by the linearity of (6) and (7)
1d

37 (||¢'3||2 + ||h||2) = (e, e)—(h,V xe)+ (hy,h)+ (V x e, h)
= _(mt7h)
In addition
L9 )2 = (my,m)
2 dt b
Hence
1d
5 (llell® + Irl? + [lm]*) = —(mq, h) + (my,m) = (my,m — h) (18)
where

my — F(H2, Mz) — F(Hl, Ml)

Integrating (18) in time and using the Cauchy-Schwarz inequality and Lemma 2.1, we have the
following estimate:

E(t) - E(0) = /Ot(F(Hz, M) — F(Hy, My),m — h) dt

< / |F(Ha, M) — F(Hy, My)|| ([]] + [[ml]) d¢

v(1+ «)

< ooz Hsllwar + [[Mi]loar + ([ Molle.or

t
+||Hz||oo,szT)/0 (IRl + [lm]])* dt.
This may be written
t
E(t) < E(0) + u/ E(s)ds. (19)
0

An application of Gronwall’s inequality proves the lemma. 0O

3 A Numerical Scheme

The main point of this paper is to propose and analyze some finite element schemes for ap-
proximating the Maxwell-LLG equations. We start by describing a variety of different finite
elements that fit into the general framework we use. Let 7, be a mesh of €2 of regular and
quasi-uniform elements of maximum diameter h. At this stage the mesh could either consist of
tetrahedral or hexahedral elements.

Using the mesh 7,, we will construct finite element spaces U, C Hy(curl;2) and V;, C
(L2(2))® N (Loo(2))? such that V x U, C Vj. Assuming we can construct suitable spaces U,
and V},, the numerical method we shall analyze is to find (Ey, Hp, M) € U, x V}, x V}, such
that

(5Bnt) = (HLVxw) = () W, €U, (20
0 0

(Eﬂha d)h) + (VX Ep, ¢,) = — (&Mha ¢h) Vo, € Vs, (21)

(QMh,sh) — (F(HWMu),6), €€ Vi (22)

ot h INRIA
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where (-, -),, is a suitable discrete inner product depending on the space Vj.

3.1 Tetrahedral elements

If the mesh is made of tetrahedra, we propose to use edge elements to approximate the electric
field, and discontinuous elements for the magnetic field and magnetization. We shall describe
two suitable elements based on the Mur-Nédélec family [13, 15]. The first element is described
in some detail since it is the one we use in our computations and we also need to define some
notation for the upcoming error estimate. Let P, denote the space of polynomials in z, y and
z of total degree at most k.

3.1.1 Linear Tetrahedral Elements
We approximate the electric field by piecewise linear polynomials so that
Up = {u € Hy(cur; Q) | u € (P1)*}.

The degrees of freedom for this space are the average value and first moment of the tangential
component of the electric field along each edge in the mesh (see [14] and Figure 1). Thus if K
is a tetrahedron in the mesh, the degrees of freedom are

/(uh - T¢) ds and /(uh “Te)sds

where e is an edge of K with unit tangent 7, and s is arc length along e. These degrees of
freedom can be used to define an interpolation operator 73, : (W1¥(Q))?> — Uy, s > 2 such that

lw = rpul| + |V x (u — rpu)|| < CAP[[[ul[|p11 (23)

Nealllprr = [ Nl
Ker,

This element can be extended to curvilinear tetrahedra using the method of Dubois [4] (the
paper of Dubois is for first kind edge elements [14], which could also be used to discretize the
electric field).

For the magnetic variables we use piecewise constants

where p =1 and

Vi ={v € (Ly()? | v € (P)*}.

The degrees of freedom for this space are the value of the field at the centroid of each element.
These degrees of freedom define an interpolation operator

w? : (H*(Q))® =V,

such that
v — wv| < CH?[[|v]||p+1 (24)

for p = 2.

RR n°3169
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%

Figure 1: Here we show the degrees of freedom of the linear edge space on tetrahedra (left,
used for the electric field) and the degrees of freedom for the piecewise constant space (right -
used for the magnetic field).

Finally we need to define a suitable discrete inner product. If ag is the centroid of tetra-
hedron K, and if we define the discrete inner product

(u,v)y, = Zvol(K)u(aK) -v(ak)

K

then this inner product coincides with the exact inner product on V} since the quadrature
integrates linear functions exactly so

(up, v)n = (up,vy) Vup, vy € Vi
We also define the following discrete seminorm on suitably smooth function w:
el = v/(uw, u)n

This is exactly the standard (Ly(£2))® norm for functions in V.
A particular attraction of this element is that it can be partially mass-lumped (see section
7), yet also handle anisotropic material properties.

3.1.2 Quadratic Tetrahedral Elements
We approximate the electric field by quadratic polynomials so that
Up = {u € Hy(cwr; Q) | u € (P2)*}.

The degrees of freedom for this space are the average value, the first and second moments of the
tangential component of the electric field along each edge in the mesh, and suitable moments
on each face (see [15] and Figure 2). For this element (23) is satisfied with p = 2.

INRIA
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Figure 2: Here we show the degrees of freedom of the quadratic edge space on tetrahedra (left,
used for the electric field) and the degrees of freedom for the piecewise linear space (right -
used for the magnetic field). The solid e signifies a third moment degree of freedom at the
appropriate positions.

For the magnetic variables we use piecewise linear
Vh = {'U € (LQ(Q))B ‘ v E (P1)3} .

The degrees of freedom for this space are the value of the field at four points in the element.
These are chosen to give an accurate discrete inner product. Let ax be the centroid of element
K having vertices {aX}}_,. Then the four interpolation points are

¢ =aax+(1—a)al, 1<i<4,

79

where a = (1 — v/5/5). Using this interpolant, estimate (24) is satisfied with p = 2.
We use the interpolation points to define the discrete inner product

(w0 = Y DS (el - o(ek).

K

This inner product coincides with the exact inner product on V}, since the quadrature integrates
quadratic functions exactly so

(’U,h, ’U)h = (uh, ’Uh) V’U,h, vy € Vh.

In comparison to the linear element, this element suffers from the disadvantage that it can
not be mass-lumped.

3.2 Hexahedral elements

If the mesh is made of hexahedra, we still propose to use edge elements to approximate the
electric field, and discontinuous elements for the magnetic field and magnetization. We shall
RR n 3169
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B L=k
| - L

Figure 3: Here we show the degrees of freedom of the linear edge space on hexahedra (left, used
for the electric field) and the degrees of freedom for the piecewise linear space (right - used for
the magnetic field).

describe two suitable elements based on the Nédélec family [14]. For simplicity, we shall restrict
ourselves to right hexahedra with edges parallel to the coordinate axis. Isoparametric elements
of this type are also possible (see for example [19] and references therein), although we know
of no error analysis for these elements. Let Q) ;,, denote the space of polynomials of degree k
inz, [ in y and m in z.

3.2.1 Linear Hexahedral Elements

We approximate the electric field by anisotropic piecewise polynomials:

Un ={u € Ho(cur; Q) | u € Qo110 X Q101 X Qu,10} -

The degrees of freedom for this space are the average value of the tangential component of the
electric field on each edge in the mesh (see [14] and Figure 3). Estimate (23) is satisfied with
p=1.

For the magnetic variables we use piecewise trilinear

Vi = {’U € (Ly(Q))° |v e (Q1,1,1)3}-

The degrees of freedom for this space are the value of the field at the two point tensor product
Gauss points. Estimate (23) is satisfied with p =1 (and with p = 2).

To define the discrete inner product, let £szk 1 < 1,j,k < 2 be the tensor product Gauss
points in hexahedron K, then we define the discrete inner product

ol =3 333 el ) - wiel)

then this inner product coincides with the exact inner product on V}, (since the two point Gauss
rule is exact for cubic polynomials).

INRIA
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Figure 4: Here we show the degrees of freedom of the quadratic edge space on hexahedra. In
the left panel, we show just the x component of the electric field. In the right panel we show
the degrees of freedom for the discontinuous piecewise quadratic space used for the magnetic
field. Here the e marks the position of the vector degrees of freedom.

3.2.2 Quadratic Hexahedral Elements

The linear hexahedral element is the first of a family of elements. Next we describe the quadratic
element in this family, and leave higher order elements to the reader. We approximate the
electric field by

Up={u € Ho(cur; Q) | u € Q122 X Q2,12 X Qa22.1}-

The degrees of freedom are described in [14] and Figure 4. Estimate (23) is satisfied with p = 2.
For the magnetic variables we use piecewise tri-quadratic polynomials:

Vi = {v € (L2(Q)* | v € (@)} -

Estimate (24) is satisfied with p = 2.

To define the discrete inner product, let {i{{j’k 1 <1,7,k < 3 be the 3 x 3 tensor product

Gauss points in hexahedron K, then we define the discrete inner product

3 3 3
vol(K)

ORI 3) B B LML LTI

K = =

i=1 j=1 k=1

where w; jx, 1 < 1,7,k < 3 are the quadrature weights for the tensor product formula on [0, 1]3.

3.3 General Comments on Suitable Finite Elements

The finite element spaces, and the discrete inner product that we have suggested above have
the following properties:

RR n° 3169



rreter Monk, Ubvier vacus

o VxU,€V,.

e The discrete inner product is computed using quadrature on each element in the mesh.
The quadrature points are assumed to coincide exactly with the degrees of freedom for
Vi

e The inner product coincides with the (L,(€2))? inner product on V}.

With these properties (and suitable interpolation operators) we can prove the error estimates
in the next sections.

Perhaps the most obvious scheme that does not fit into our frame-work is the 3D finite
element analogue of the method used in [6]. This corresponds to using the linear edge space
on hexahedra, and a piecewise constant space for the magnetic variables. This does not satisfy
V xU, CV,.

4 Conservation Properties of the Semi-discrete Scheme

The numerical scheme conserves the magnitude of the magnetization at the quadrature points
of the discrete inner product. This is the discrete analogue of (5).

Lemma 4.1 Let a; be a quadrature point for the integration scheme used to compute the dis-
crete inner product. For each time t,

[ M (ai,t)| = | Ma(ai, 0)]
In particular, ||M}||w o is bounded independent of t and h.

Proof. We choose &, € V}, to interpolate M, at a; and interpolate zero at all other quadra-
ture (or interpolation) points. Let w; be the corresponding quadrature weight in the discrete
inner product. Using &, in (22) we conclude that

(%Mh,Mh>h = wZ%Mh(az) . Mh(ai) = ’U)ZF(H, M)(a'z) ’ Mh(a’i) = 0.

|
The method also conserves the energy of the electromagnetic field, again mimicking the
continuous case (see [5]).

Lemma 4.2 Suppose J = 0, then for each time t,

IER(@®)|” + ([ HaOI” + [|[(Hs — My)(@)||]* + K[| P(My)(t)]|
< [ERO)|I” + |HAO)[1* + [||(H, — Mu)(0)[[|* + K[| | P(M4)(0)]|[*.
Proof. The proof consists in checking that the energy decay proof in [5] holds for the finite

element problem. Recall that we assume J = 0. Selecting v, = Ej, and ¢, = H}, in (20) and
(21) and adding the resulting equations we obtain

0 0 0
<§EhaEh) + (aﬂhaﬂh) = - (aMh;Hh)
0
- - <aMh7Hh>h
0

?
- <6—Mh,Hh + Heff> + (a—Mh,Heff) (25)
t h t hINRIA
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where we have used the fact that the discrete inner product is exact on V}, x V},, and the effective
field is defined by
H.,;=H,—- KP(M,).
Next we analyze the two terms on the right hand side of (25). First we use the fact that
P(My) is a projection to write

0 0 0
<&MhaHeff>h = (aMh,Hs)h—K<aMh,P(Mh)>h
0 0
- (2 k(2P P(M
(5 mHQhA(&H w,<h0h

Next, using the fact that H; is static and M} has time independent discrete norm, we can
write

at 2dt

To analyze the first term on the right hand side of (25), we choose &, to be the interpolant
of HT in (21)

0 1d
(—muJLﬁ) = L M = L+ KPP
h

0 oy M,
— M, H =— X (Hp x My), H
<6t h> T)h 1+C\(2 <|Mh| ( T h)7 T>h

Since the discrete inner product is computed pointwise we can rearrange the right hand side of
the above expression and hence we deduce that

%% BN + IHA O + [|I(H, = Ma)@)]|* + K[| P(M) (@)][]°]

N ary HTXMh
T T1raz \ My

and the result is proved. O

,HT XMh> <0.
h

5 Error Estimates

In this section we prove error estimates for the semi-discrete problem.
Let us define the error
E(t) = (E = Ex)®)|* + I(H — Hy)OI* + [||(M — My)(0)]]]*-
Also let wy, = (Ly(R2))® — V4 be the (Ly(Q2))? projection into Vj. The accuracy properties of the
v(1+ «)

projection follow from the interpolation error estimate (24). Finally, recall that 7' = TTar
«

We can then prove the following estimate:
Theorem 5.1 Let T > 0 be the final time of integration for the solution. Let A(T) be defined
by

ANT) = max (|(B—rE)ON +||(H — wH)()|* + [[|(M — w,M)(1)]]|*

0<s<T

Hlen O + a0} + [ (0}
t

+ [ (I6rB ~ BYIP + B — BI? + | H - H*
0

+ I % (4B — B)|?+ [ H — H|? + (@M — M)J?) i) (26)
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and suppose

a
pr = s (14 720 (1Bl + Bl + [ Ml + [ M) ) < o

then for each t with 0 <t <T
E(t) < A(T)? exp(Cpat)

Remarks: Assuming that the solution (E, H, M) of the continuous problem is smooth en-
ough on each element, we have the following estimate

I(E = En)O] + I(H — Ha) (@) + [[[(M — M) @)]]| = O(h*)

where p is the index in (23) and (24) and 0 <t < T'. The necessary smoothness of the solution
comes from the norms in (23) and (24). We do not currently have the necessary a priori
estimates to relate this smoothness to the data of the problem.

Before we start the proof, we define some notation. Let

eh:’l"hE—Eh, hh=whH—Hh, mh:w}?M_Mh-

Proof. We start by expanding (e, ey) + (hp, hy) + (my, my), where the subscript ¢ denotes
time differentiation:

%% ((eh, eh) =+ (hh, hh) -+ (mh, mh)h)
= (6h7t, eh) - (hh, V x eh) + (hh,t, hh) + (V X €p, hh) + (mh,t, mh)
= ((’f'hE — E)t, eh) — (whH — H, V x eh) -+ ((E — Eh)t; eh)
—(H — Hh, V x eh) + ((whH — H)tah’h) + (V X (’)“hE — E),hh)

+((H — Hh)t; hh) -+ (V X (E — Eh), hh) -+ ((w,?M — Mh)t7 mh)h.

Now using the linearity of (20) and (21) and subtracting these equations from the corresponding
equations for E and H we find that

((E— Eh)t; Bh) — (H — Hh,V X eh) =0
((H — Hh)t; hh) -+ (V X (E — Eh), hh) = —((M — Mh)t; hh)

Furthermore, since we choose wy, to be the (Ly(£2))*® projection onto V}, and we assume that
V x U, C V,, we can conclude that

(whH — H,V X eh) = 0, and ((whH — H)t, hh) =0.

Hence, using these equalities and expanding the term ((M — M)y, hy,) we arrive at the estimate

%% ((eh, eh) =+ (hh, hh) -+ (mh, mh)h)
= ((rE — E),ep) + (V X (B — Ep), hp)
~((M — w? M), hn) — (wf M — M), hy,)

+((w M — M), 7). (27)
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Now we estimate the second two terms on the right hand side of (27). Using the equivalence
of the discrete and continuous inner products on V}, and (22) we obtain:

(wZM — My), my,)
= ((WfM — M)y, mp)n + (M — M), mu)n
= (F(H,M) — F(Hp, M), w?M — M),

where we have used the fact that w? is the discrete projection to set (w2 M — M), my), = 0.
Hence, using Lemma 2.1, the Cauchy-Schwarz inequality and expanding terms

(w2 M — My),,m)| <
< Y (IHulloos + | Hllso + [ Moo
+M o) (1M = My||| + ||| H — Hyl[]) ||l M — M|
< 7 (1Hullsog + [ Hllsog + Ml
1M |l so0) (111M — My ||| + ||| H — w H|| + [|[wf H — Hy||) |[[wfM — M|

Now using the equivalence of the discrete and continuous norms on V} and the arithmetic
geometric mean inequality we obtain

(WM — M), my)| <
< C(|H llson + [ Hllso + 1Ml + [ Mlse.0) (|| M = M|
+[||H — w?H||| + |[wfH - H| + ||H — Hy|) f M — M|
< C(1H,lloon + 1 a0 + | Ml + M ]oc0) (I[[M — M|
ol H — H|* + | H - H, ). (28)

where we have again used the fact that ||| H—w® H||| = 0 and |||wZ M —M,||| = ||| M — M]||.
We proceed in a similar way to estimate the term ((wy M — My),, hy):

(w2 M — M)y, hy) = (w2 M — M), by
= ((M — My)s, hp)n
(F(H,M) _F(HhaMh)awhH_Hh)h-

Now we expand terms and use the lemma, the Cauchy-Schwarz and arithmetic geometric mean
inequalities to obtain:

(WEM = M), k)| < C (| Holloo + [ Hllooio + [ Mlloess + 1M ]| e0)
(1110 = M| + || H = wp HI? + |0l H — H|? + | H — Hyl*). (29)

Combining (28) and (29) in (27) and using the arithmetic-geometric mean inequality shows
that

d
dt ((en, en) + (hn, hy) + (Mp, mM04)1)

< C{(I0nE = B + 1Bl + IV % (raE — B)|* + lleal® + [[(w? M — M) 1)
+ (1 Hulloo0 + | Hllso.0 + Moo + M oc.0)

(111D = M+ | H = H* + [lwnH — HI? + o H - H|) |
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Further expanding the terms ||e;||? and ||hy||* and collecting terms we obtain

d
dt ((en, en) + (hn, hy) + (1104, M4 ))

< 5 (lnB ~ B)IP + B - BI* + |uf H - H|?

HIV % (mE — B)|* + [lwpH — H|]* + [|(w? M — M),
+|IM — M|[|” + | H — Hy|* + |E — En|”) . (30)

where

ay
6= C+ 17 (IHslwa + [[Hllwa + [ Mhlloa + | Mlo0)).

Integrating (30) we have shown that

I(E = Ep)@)|* + I(H — Hp)(@)]I” + [[[(M — My)(1)]]*
< NE - E)O* + [(H — wp H)(@)|]* + |[|(M — wp M)(#)]]|?
+HlenOI* + [lha(®)]* + [[lma(®)][|*
< NE = rB)ON* + (H — wp  H)(O)|* + [[[(M — wp M)(t)]||*
+len(O)I* + 1rn(0)[I* + [ (0)|]]*

t
=[5 (10vB ~ BYIP + 0B — BI? + [ H - H*
0

HIV % (B — E)|* + [lupH — H|]* + || (w? M — M),
+ [[[M — My||* + |H — Hu|* + |E - Ep|?) dt (31)

Now let A(T') be defined by (26) and let 67 = maxg<i<r 6. For 0 < ¢t < T we can rewrite (31)
as

I(E = B0+ II(H = Hy) @) + || (M = M@
< AX(T) +6T/0 (1B — Ball? + | H — Hal> + ||| M — M,)|?) dt.

Using the Gronwall inequality shows that

(B — En)ON” + II(H — Hp) @) + [I(M — My)(t)]]|* < A(T)” exp (671).

6 Fully Discrete Scheme

We choose an explicit/implicit time-stepping scheme that guarantees the conservation of the
norm of M, pointwise. In fact, if mass lumping is used, the scheme only requires a local system
be solved at each interpolation point for M and hence the scheme can be time stepped rapidly.

Let At > 0 be the time step. Then we wish to compute (Eg"),Hg"H/Q),MEL"H 2)) €
Up x Vi, x Vi, forn=0,1,,--- such that

EV ~ Ey(ty), HUM x Hyltar), MU % My(tar)o),

INRIA
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where t, = nAt. The initial data for E gives E;LO). The values of H 21/ 2 and M g/ 2 can then
be found by a half time step of a suitable explicit scheme (for example Runge-Kutta). From
then on (B, H"/2 p{"t#/2)) is determined from (B, H"/? M1/ by

E("+1) _ E(") .
(u,m —(HITV X)) = (T(taip) ) Ve €U (32)

At
D) pp(nt1/2) " AEHD 1))
( L b |+ (VB ) = - [
AHD _ ppn+1/2) e
( L At b 7£h . = (F(H%+)7M§l+))a€h>h
V€, € Vi (34)

where

H§LR+1) — (H§LH+3/2) + H2n+1/2))/2 and M%n+1) — (Mgln+3/2) + M;:LJFI/Z))/Q.

Remark: Equation (32) is exactly the equation arising in a standard finite element discre-
tization of Maxwell’s equations. If a consistent “mass matrix” is used, a linear problem must
be solved at each time step. This can be done efficiently using the conjugate gradient method
[12].

Due to the use of the discrete inner product, equation (34) is satisfied at the quadrature
points of the discrete inner product and hence at the interpolation points for V},. In addi-
tion, since V x U, C V,, equation (33) is satisfied pointwise. Thus both equations can be
solved at the interpolation points without coupling between interpolation points. Furthermore,
using properties of the cross-product it is possible to derive explicit formulae for H Szn+3/ 2 and

M ;L"’L?’/ 2) [5]. So it is not necessary to use Newton’s method at each time step.
Next we verify that the time stepping scheme satisfies the same conservation properties as
the semi-discrete scheme.

Lemma 6.1 Let a; be an interpolation point for Vi, then for n > 0,
n+1/2 1/2
M (@) = | M (a))

Proof. Similarly to the proof of Lemma 4.1, we choose &, in (34) to interpolate M%"H/Q) +

M gﬂﬂ/ 2 at a@; and vanish at all other points. By the definition of H™ and M®™) we
conclude that

n+3/2 n+1/2 n+3/2 n+1/2
(M (@) = M (@) - (M @) + M (@) = 0
Hence | M "% (a,)| = |M{""'/? (a;)|, and the result follows. 0O
Lemma 6.2 Suppose J = 0, then for each time step N > 0,

N N+1/2 N+1/2
LB + ([ HN D)2 4 ||| (H — M)N )| 2 4+ K[| P(MNT2))) 2
0 1/2 1/2
< NEDN + =)+ |||(H, — M,)Y|)? + K|||[P(M)])?
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Proof. The proof is a fully discrete version of the proof of Lemma 4.2. Using ), =
EM — B in (32) and ¢, = H™? — H("'/?) in (33) and adding we obtain:

n+1 n n+3/2 n+1/2
(1B 12 = 1B 12) + (JE ) - | E2)2)
+At (V x B =) - At (v x B, H)

_ (M2n+3/2) _ M%n+1/2)’H§Zn+3/2) i HELHH/Q))h' (35)

As in the proof of Lemma 4.2,
(M%n+3/2) _ Mgn—kl/Q)’ Hgn+3/2) n Hgn+1/2)>
_ (Mgn+3/2) _ Mgn+1/2)’ H(Tyf;::s/z) 4 H%’J{Uz))h

(n+3/2) (n+1/2) (n+3/2) (n+1/2)
= (M - M G+ H )h

h

eff,h
where

HYY = B + HESP and HYY = wiH, — wlKP(MH?),

Note that H("+1/2) € V.
Now using the definition of F', we see that

(Mgln+3/2) _ M), Hgfffm i H%’TI/Z))h > 0.

Furthermore, using the fact that H is static, and the fact that the norm of M ZH/ ? is conserved
at the interpolation points, we see that

n+3/2 n+1/2 n+3/2 n+1/2
(Mﬁ A D g | gy ))h
1

n+3/2 n+1/2
5 (B — B |12 = ]2 — | 2)

K n+3/2 n+1/2
—TWWMﬁwwwwww”W)

Thus (35) becomes
n+1 n+3/2 n+3/2 n+3/2
BT DN2 + | HE)2 4 || M — || + K2 P(M )| 2
n n+1/2 n+1/2 n+1/2
< BN+ I HET)2 4 | My~ =P+ K2 P(MGT)))2
+% (V y E2n+1),H§ln+3/2)> A; (V Egn)’Hgn—H/Q)) _
Adding this estimate over n we obtain
N+1 N+3/2 N+3/2 N+3/2
IESN N2 4+ ([ HN )2 4| M NP — HJ[)? + K2 P )

At
_7 (V % E2N+1)’ HELN+3/2))

0 1/2 1/2 1/2
< NEDP?+ =212+ || MY - H||)2+ K2 P(M))|?

_ At (V <« B H<1/2>>
2 INRIA
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But using the assumed quasi-uniformity of the mesh
N+1 N+3/2 N+1 N+3/2 1 v+1 N+3/2
(7 x B =) <V B EY ) < op B ).
Hence

1 At N+1 N+3/2 N+3/2 N+3/2
(550 ) (LI LY 2IR) + 12 — B2+ 21| P2

2 4h
1 At
< (5 _CE) (LB 12 + L2 2) + 110572 — B2 + K2 P/ 2

If At/h is chosen small enough that

the method is stable. Note that the constant C is independent of h and At but does depend
on the shape of the tetrahedra in the mesh via the quasi-uniformity assumption. 0O

7 Numerical Results

This is not the place for elaborate numerical results. Instead we show the results from a simple
validation problem that reduces to a one dimensional model problem similar to that studied in
[5]. This problem demonstrates some of the features that make ferromagnetic layers interesting.

The code uses the linear tetrahedral elements described in section 3.1.1. One major modi-
fication compared to the theory presented in the previous sections is that we approximate the

exact inner product
E(n+1) . En+1
( h L 3 d)h

At

in (32) using element-wise quadrature in which the vertices of the tetrahedra are used as
quadrature points. This has the effect of decoupling degrees of freedom for the electric field at
different vertices. Thus Egnﬂ) can be computed by solving a series of small matrix problems
associated with each vertex. We term this “partial mass lumping”. We expect, but have not
proved, that this quadrature will preserve the order of convergence of the method (see [2] for a
discussion of quadrature error effects on elliptic problems).

The domain €2 is shown in Figure 5. The solution is assumed to be periodic in the x and
y directions with period L, and L, respectively. The incoming wave travels along the z axis
from the left and interacts with a ferromagnetic layer of length L,, at the right of the domain
(shaded). This problem reduces to a one dimensional problem. The incoming wave is

E™=Ey| 1 | 9(f(t—2z/c))
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Lz

Figure 5: The domain for a periodic scatterer.

where g is the Ricker pulse

. 2k (2k(s — 1.35)% — 1) exp(—k(s — 1.35)?) if ¢ < 3.48
g\s) =
0 if t > 3.48

and k = (7/1.31)%2. We choose Ey = 100¢/ . The values of f, c and u are given in Table 1.
Incorporating periodicity into the computations is simple since the time stepping scheme
is explicit. In addition we use inhomogeneous boundary conditions by interpolating boundary
data. The effects of this interpolation also needs to be analyzed.
The initial state in the ferromagnet is

M=1 100 |, B=pM and E=0.

Outside the ferromagnet, all the fields vanish. This choice of fields gives an initial field at
equilibrium, and V - B = 0 at ¢t = 0. The parameters for our numerical experiments are given
in Table 1.
We mesh the domain by dividing the z dimension into N, = 300 subdivisions. This implies
a z mesh interval of L,/N,. We then choose L, = L, = L,/N,. The resulting prism is then
divided into N, cubic cells. Each of these cells is then sub-divided into 6 tetrahedra to form
the three dimensional grid. This gives h ~ 0.133m and we take At = 0.5 x 1070, with a final
time of integration T = 3 x 10~7. Results at three different times are shown in Figures 6 and
INRIA
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Parameter | Value Parameter | Value

L, 40 m L, 0.4 m

L, 0.4 m L, 16 m

Ly 24 m

€0 1.3963 x 107° F/m || po 1.25667 x 107¢ H/m
c 3 x 108 m/s f 4 x 107 Hz

Ey 100 A v 2.2 x 10° Hz m/A

o 0.2

Table 1: Parameters for the one dimensional comparison problem

7. The incident field has vanishing  and z component, but after transiting the ferromagnetic
layer the signal is “rotated” to make the x component non-zero. In addition, since o # 0 the
layer is absorbing. Thus the magnitude of the reflected wave is also diminished.

The results computed in Figures 6 and 7 are computed with N, = 300. Similar results can
be obtained using a one dimensional finite difference code with N, = 100. This is not surprising
in view of the fact that the grid obtained by subdividing cubes into 6 tetrahedra is particularly
poor for edge elements (strictly this is only demonstrated for non mass lumped edge elements of
the first type [12] but the same problem is likely to afflict the element used here). Using a grid
of cubes subdivided into five tetrahedra might improve the computation. Obviously the used of
elements with better dispersion properties would improve the efficiency of the algorithm, and
we are pursuing this approach now.

8 Conclusion.

We have presented a convergence theory for finite element methods for the Maxwell-LLG equa-
tions that includes a variety of elements. The resulting discrete equations have conservation
properties similar to the continuous system, and this allows us to prove the error estimates.

Numerical results show that the linear tetrahedral scheme can be applied in three dimen-
sions, but also reveals that the method can be expensive on certain grids. We plan to test
higher order approaches in the future, and refine the error analysis to include mass-lumping
and inhomogeneous boundary conditions.
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x 10% Electric field at t=8.244e—08
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Figure 6: Here we show the electric field along the center line of the domain at three times.
In the top panel, the incident wave is travelling to the right about to enter the ferromagnet
(shaded). Only the y component is visible. In the middle panel the wave has been reflected
by the right wall. The ferromagnet has “rotated” the wave and the z (small amplitude) and y
components are visible. In the bottom panel the wave has exited the ferromagnet. It is now
lower amplitude and rotated.
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Figure 7: Here we show the x and z components of the magnetisation M along the center line
of the domain at three times corresponding to the results in Figure 6. In the top panel, the
incident wave has not entered the ferromagnet so the magnetisation is at the initial state. In
the middle panel the wave has been reflected by the right wall. The induced magnetisation is
now visible (the larger amplitude wave is the z component). In the bottom panel the wave has
exited the ferromagnet.
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A A geometrical lemma

In this appendix we prove the following identity :
V(M;, M, H) € (R%)°,

M
A(M;, My, H) = | — x (Hx M;) — ﬁ x (H x My)| < |H| [M; — M, (36)
2

We decompose
H = H|| + H n
where H|| is in the plane IT defined by M; and M, while H, is perpendicular to this plane.
M, M,

(Of course we assume ™| # YAk otherwise the result is obvious.)
1 2

H,
M,

Note that [H|* = [H;|* 4+ [H.|*, and that

and
MZ'X(HJ_XMi) 1 1II

Thus we have, via Pythagorus’s theorem,

M, M,
) —|M | X (H” X Ml) —|M | X (H” X Mg)
‘A(Ml’MQ’HN = ! M2 M 2
+ ‘M1|X(HJ—XM1)_M;X(HJ—XM2)

INRIA



LTTror esttmates jor jerromagnetic prootems zl

M1 M2

x (Hyx M x (Hyx M
M | ( I 1) M| ( I 2) 2
M1 M2
H M;)- — x(H M
+ |M1‘ X( 1 X 1) |M2| X( 1 X 2)
As H | is perpendicular to M; and M, we have
M.
! X(HJ_XMZ') = ‘M1|HJ_
| M|
which allows us to say that
M1 M2 2 2
H M) — H M = M| - |M,|) H
|M1|X(LX 1) \MZ\X(LX 2) | (M| — M) Hy |

= [H.[ (M| - M)’
and to conclude that
i
| M, |

2

< [HL*[M, — Myf? (37)

M
x (Hp x M;) —

2
Y2 H, xM
|1\/[2\X(L>< 2)

On the other hand, concerning Hj;, we have

H, x M, M, .
I 7 Z X (H” X MZ) = sinf; \H”\ M,
[Hj| [M;] sin 6; | M|

where
—————

61 = (H), M) # 0

o —

6, = (), M;) # 0

0= (Ml,Mz) =0, — 6,
Since
I_III x M, H|| X M,
. == - = u
[H, | | M| sin 6, 'H,|| [M;| sin 6,
the crossproduct by this vector u defines a rotation — that is to say an isometry — which maps

M; :
M| x (Hy x M;) on sin6; [H;| Mj;, and thus we have

M M 2 . .
o (Hy x My) — —2 x (Hy x My)| = [H)?|sin6 M; — sinfy M, |2 (38)
/M, | /M|

It is then straightforward to compute that |[M; — My|?> — |sin# M, — sin§,M,|? is equal to

= |M;[* + |[M,|? — 2cos 0| M, || M|
— (SiIl2 01|M1|2 + SiIl2 02|M2|2 - 25in01 sin 02|M1||M2|)
= cos? 01| M |* + cos® 6| Ms|* — 2 cos 0; cos 05| M || M|

= (cos6;|M;| — cosfy|M,|)* > 0 (39)
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which shows, with (38), that

M M 2
Sox (Hy x M) — 2 x (Hy x My)| < [Hy? [ M; — M, |2 (40)
/M, | | M|

Taking into account that |H|* = |H)|* + [H.|*, we get the result by summing (37) and (40).
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