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Abstract: We present in this paper the numerical computation of the multi-valued travel-
time field generated by a point source experiment in the Marmousi model. Two recently
developed methods are combined to achieve this goal : a method called big ray tracing,
used for the computation of multi-valued travel-time fields, and an eikonal solver designed
to work on unstructured meshes.

Big ray tracing is based on a combination of ray tracing and local solutions of the eikonal
equation. A classical ray tracing first 'discretizes’ the phase space and defines local zones
which possibly overlap where the travel-time field is multi-valued. An eikonal solver then
computes the travel-time in these zones called big rays. It acts as an exact interpolator
between rays associated to different branches of the travel-time field. The geometry of the
big rays may be complicated and is best discretized using unstructured meshes. An eikonal
solver designed to work on unstructured meshes is used.
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Lancer de Gros Rayons et Résolution de ’Equation
Eikonale sur maillage non Structures : Application au
Calcul de Temps d’Arrivées Multiples dans le Modéele

Marmousi

Résumé : Nous utilisons la technique de lancer de gros rayons combinée a un schéma de
résolution de ’equation eikonale discretisée sur maillage non structurés. Nous calculons ainsi
les temps d’arrivées multiples générés par une source ponctuelle dans un modele de vitesse
'réaliste’ : le modele Marmousi



BRT on unstructured grids 3

1 Introduction

Motivated by potential application in tomography and the computation of migration oper-
ators, several studies on the direct resolution of the eikonal equation have appeared in the
geophysical literature (see e.g. [25, 15]). This technique, usually based on finite differences,
allows the computation of the travel-time field on a regular grid. This desirable property is
not shared by classical ray tracing which uses interpolation processes to reach the same goal.
The limitation of this approach dwells in the fact that eikonal solvers only compute the earli-
est travel-time (usually associated to the less energetic reflections). The computation of the
multi-valued travel time field (i.e. all the branches of the solution) using ray tracing, eikonal
solvers or other methods, is a difficult academic problem and a challenging industrial issue.
A non exhaustive bibliography on this subject follows : [27, 23, 5, 6, 4, 13, 20, 24, 12, 17] .

We present in this paper the application of two methods, recently developed, to the
computation of the multi-valued travel-time field generated by a source point experiment in
the two—dimensional Marmousi Model. It is namely the ’big ray tracing’ method [9] com-
bined with an eikonal solver designed to work on unstructured meshes [2]. Both methods
are quickly reviewed and the result of the computation presented and commented.

A rapid outlook of the problem indicates a first difficulty : given a velocity model, there
is no way of a priori determining the number of different branches of solution and their spa-
tial location. This information is only contained in the phase space solution of the problem,
i.e. the solution computed by ray tracing. A second problem is to understand the relation
between the single-valued numerical solution of the eikonal equation and the multi-valued
travel-time field. Since the eikonal equation is a very particular case of a Hamilton—Jacobi
PDE, we discuss this problem in connection with the theory of viscosity solutions in the next
section. We then detail the hybrid algorithm based on ray tracing and local resolutions of
the eikonal equation in section 3. The current limitations of the method are also described
here.

There is some litterature about the numerical discretisation of Hamilton—Jacobi equa-
tions on regular grids. One may cite for example [11, 7, 21]. There are two major difficulties
in this problem : how to derive stable schemes (i.e. the numerical solution does not blow
up) 7, how to derive schemes which ensure the convergence of the numerical solution to
the viscosity solution ? Hidden behind the eikonal equation are the rays of the geometrical
optics : the perturbations generated by the source point travel with a finite speed in the
computational domain on the rays from the source to any current point. By taking into
account this “upwinding” phenomena, it is possible to construct stable, monotone and con-
vergent schemes. For example the Godunov or Lax—Friedrichs schemes of [21] belong to this
class. Because of the potentially complicated geometry of the local domains on which these
local solutions are computed, they are more accurately discretized using an unstructured
mesh. It is possible to generalise the above schemes to unstructured meshes and to keep
the stability and convergence properties. In section 4, we detail our Lax—Friedrichs scheme

RR n~°3019



4 Rémi Abgrall , Jean-David Benamou

on triangular unstructured meshes. It is a first order scheme, its second order (in space)
version is described in the Appendix. We have chosen this particular scheme because its
implementation is relatively easy.

2 Viscosity solutions of the eikonal equation

The theory of viscosity solutions of Hamilton-Jacobi equations ([19, 8]) provides a rigorous
mathematical framework for the resolution of the eikonal equation. Eikonal numerical solvers
actually belong to the 'upwind’ schemes family, the solution of which converge to generalized
(the gradient of the solution may be discontinuous) or ’viscosity’ solutions. In what follows,
w is the travel time, n is the slowness index of the domain (2, and V is the gradient with
respect to the variables z and z.

The viscosity solution of the eikonal equation in a given domain {2

Vu(z, 2)|| = n(z, ), (z,z) €N (1)
with a forced point source S at (zo, 20)
u(Zo, 20) = 0 (2)

and the Soner ’discontinuous’ boundary condition ([22] [26]) conveniently written as (see

(8])
uw(z, z) = 400, (z,2) € N (3)

can be schematically characterized, for all (z,y), as the solution of a state constrained optimal
control problem. More precisely, u(x,y) is the infimum of

(z,2)
/( n(€(s))ds

0,20)

over all paths ¢ joining (2o, 20) and (z,2) and such that & remains strictly in Q, see Figure
1. Here, s is the arc length. When  is the whole space, this is formally equivalent to the
Fermat principle and the optimal s — £(s) are rays which are associated to the smallest
optical length, that is, the earliest travel-time.

Latest travel-times can also be characterized by a similar minimization problem. The
key point is to notice that, when a ray gives a local minimum for the above optimal control
problem set in the whole space, the associated value function gives a latest travel-time. So,
if we consider a ray giving a latest travel-times and choose a restricted €2 such that this ray
will become a global minima for the new optimal control problem (see fig. 1), the viscos-
ity solution of the eikonal equation on this restricted domain will correspond to this latest
travel time. In short, the viscosity solution always gives the earliest travel time subject to the
constraint £(s) €  which at the equation level is enforced by the Soner boundary condition.

INRIA



BRT on unstructured grids 5

Figure 1: Three rays are crossing. We suppose that the dotted rays give earliest arrival times
at the crossing B from the source A, the other (plain line in the colored domain) a later
arrival time. The latter ray (a local minimum in all space) will still be a global minimum in
the colored domain and therefore the viscosity solution of the eikonal equation with Soner
boundary condition in this domain gives the later arrival time at the crossing B.

In [9], where these ideas are developed, a method called ’big ray tracing’ is proposed to
select a family of local domains, the big rays, such that the associated viscosity solutions give
in each big ray a different branch of the multi-valued travel time field. We face here again
the first difficulty mentioned in the introduction : each branch of the eikonal multi-valued
solution is associated to ’local’ families of rays. A natural idea is to perform a ray tracing
as a first step to analyze the problem and select these local domains. This is explained in
the next section.

3 The Big Ray tracing algorithm

We propose the following automatic procedure:

e Ray discretization : Trace a given number of rays with initial shooting angles (see
figure 2) regularly discretizing an initial opening angle corresponding to a fan of rays
(with a Runge Kutta algorithm for instance). Rays are numbered following these ini-
tial directions (say from left to right on figure 2).

e Big rays generation (see also appendix A): We now define a ’big ray’ as the
envelope of three successively shot rays. If the rays are numbered from 1 to N following
the order with which they are shot. Big rays are the envelopes of rays (1,2,3) then
(3,4,5) and so forth. angle (see also appendix A). See figure 3, 5, 6, 8 and 9 to see
actual big rays and figure 10 to see all the big rays covering the domain. We detail
this construction in appendix A.

RR n°3019
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¢ Eikonal resolution (see also appendix B and C): Compute the viscosity solution
of the eikonal equation in each big ray. We describe our method of resolution in the
next section. See figure 4 and 10 to see contour lines of the solution for two big rays.

e Multi-valued travel time analysis : The travel-time field is given by the superpo-
sition of all local travel-time fields computed in the big rays. When big rays intersect,
this step gives a multi-valued travel time field. See figures 12 and the following.

For an (incomplete) mathematical analysis of this method see [9] where we discuss, in
particular, the consistency of the method (its ability to compute the multi-valued travel
time field).

The consistency is limited by the ray discretization step. First, simply because we can
miss multi-valued travel time produced by fine local heterogeneities contained in one big
ray. If rays are potentially crossing inside a big ray, the eikonal solver will only compute the
earliest travel-time out of these two rays.

The second inconsistency is linked to the generation of the big rays. It may happened
near caustics or focal points that the big rays generation strategy leaves out only a portion of
aray. It will exit and reenter the big ray. Then this ray does not satisfy the state constraint ’§
remains strictly in ’. The viscosity solution has therefore no theoretical reason to represent
the travel-time associated to this ray once it reenters the domain. A preliminary study [18]
however suggest that the viscosity solution is a good approximation of these travel-times,
that is, converges to the correct solution as we decrease the initial aperture of the big ray
around the direction of this particular ray.

The last problem is the possible presence of conjugate points (focal or caustic points) on
the rays. After these points there are no guarantee that the ray is a local minimum. It more
likely corresponds to a saddle point for the optimal control problem discuss in section 2.
Because of the big ray discretization we avoid most of these rays which fall in the category
(just described) of rays which do not satisfy the state constraint. We are currently trying
to address these points more rigorously.

4 Eikonal solver on unstructured meshes

The big rays may have complicated geometries. We developed an automatic procedure to
mesh them using an unstructured mesh, see appendix A.

We now describe the eikonal numerical solver working on these unstructured meshes and
the practical implementation of the Soner boundary condition.

We are implementing an Hamilton-Jacobi solver designed to work on unstructured meshes

([2]). First, instead of solving the steady eikonal equation (1-2-3), we solve its unsteady
version on a period of (pseudo-)time ¢ €]0,T[ to reach a steady state solution of the eikonal

INRIA
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equation
ue(t, x, 2) + |Vu(t, z, 2)|| —n(z,2) =0, (z,2) €N (4)

We consider the following point source boundary condition
u(t,xg,20) =0, forallt>0 (5)
and the Soner boundary condition
u(t,z,z) = +oo, for all (z,y) € 0N and (z,2) # (9, Yo)- (6)
In (6), 09 denotes the boundary of Q.

We need to pick up a sufficiently large Ty to reach the steady-state solution of (4-5-6).
We typically take Ty > diameter of Q x max(, .)eqn(2, 2).

We now focus on the numerical scheme proposed in [2] to solve the unsteady eikonal
equation (4-5-6). The computational domain is first discretized by mean of a triangulation
which nodes are denoted by M;,i = 1,...,ns (with coordinate (x;,y;)) and the triangles
are denoted by T;,j = 1,...,ny. The approximation of u at node M; and (pseudo-)time
t, = nAt is denoted by u]'. The relation between u:-”rl and u? is
ult =0 if M; = S = source point

(7)

uftt =l — At (HP —n(wi,y:))  else

The Soner boundary condition is automatically enforced by the “upwind” properties of
the numerical (Lax—Friedrichs) Hamiltonian H?* (the 'upwind’ approximation of || Vu(t, z, y)||)-
This is explained in appendix B where H} is precisely defined.

This solver has been shown to be convergent (in [2, 1]) provided the time step satisfies

&l ®)
pi — 2
where p; is the radius of the largest circle of center M; and contained in the union of the
triangles listed in N; (see figure 18). The “1/2” condition can be relaxed by 1 in practice.
As previously mentioned, the sequence (u}'); converges to an approximation of the solu-
tion of the eikonal equation with the Soner boundary conditions. The difference between the
ezact solution u(z, z,t) and the numerical solution u? is expressed by the following propo-
sition ([2]) :

There exists a constant C which depends only on n(x, z) (the slowness) and « the smallest
of all the angles of the triangles T such that, for any t € [nAt, (n + 1)At[, we have :

(M, t) —u}| < C /5. (9)

RR n~°3019
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where p is the size of the largest triangle.

This inequality is very pessimistic because in its proof, we have to take into account
all the possible singularities of the solution. In practice, we observe for points M; strictly
contained inside the domain :

|u(Mi7t) - u?l <Cp.

for the first order scheme and

Ju(Mi, ) —up| < C p?

for the second order scheme described in appendix C.

Finally, we observed that the scheme needs O(ns) pseudo-time iteration steps to converge
to the steady state solution. The information indeed comes from the source and travels
from node to node with a speed limited by the CFL condition (8). This local stability
condition therefore enforces a minimum number of (pseudo-)time step iterations to reach
the steady-state at t = Ty. We are developing an implicit version of this scheme to improve
its computational performances.

5 Point source simulation in the Marmousi model and
numerical comments

We present the application of this method to the computation of the multi-valued travel-time
field in a smoothed 122 x 384 points Marmousi model (24 meters samples). The horizontal
axis x ranges from 0 to 9192m, the vertical axis z from 0 to —2904m. The source is located
at x = 6000m and z = 2800m.

The objective of this simulation is to show the ability of this algorithm to compute an
accurate realistic multi-valued travel time field. We therefore choose to build a large number
of big rays, use a reasonably fine mesh and a second order eikonal solver. The number of rays
shot, and consequently of big rays built, does not directly penalize the computational cost of
the method. Shooting rays (here 150) is indeed not very expensive and one can consider that
(at fixed minimum mesh size) the number of discretization points generated in all the big
rays only increases with the number of big rays when multi-valued-ness occurs in a region.
It is therefore necessary to compute the multi-valued solution. The computational cost of
the eikonal solver is linear with respect to the number of points in the considered domain.
So, the computational cost does not directly depends on the number of big rays once the ray
discretization is fine enough to catch the multi-valued solution. The real extra cost induced
by refining the ray discretization is the extra number of mesh generations needed.

We now comment the figures displaying the results at the end of this paper.

INRIA
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o Figure 2 : Left: a smoothed Marmousi model (velocity), the black cross indicates
the point source. Right: 150 rays shot in this model, the initial directions regularly
discretize the cone (—90°/90°). Rays are numbered following these initial directions
(from left to right).

e Figure 3 : Left: rays 7 8 9 . Right: the corresponding big ray and its mesh (7968
triangles).

e Figure 4 : Contour line of the eikonal solution (every 0.1s) in the above big ray of
figure 3.

o Figure 5 : Left: rays (71,72,73). Right: rays (73,74,75) (the z scale is larger, the rays
are very close).

e Figure 6 : Corresponding big rays and meshes (around 4500 triangles). Note that, as
rays 73 and 74 intersect, these big rays overlap.

e Figure 7 : Zoom of the meshes of figure 5.
o Figure 8 : Left: rays (113,114,115). Right: rays (115,116,117).
e Figure 9 : Corresponding big rays and meshes (around 8000 triangles). They overlap.

e Figure 10 : Contour line of the eikonal solution (every 0.1s) in the big rays of figure
9. The zone where the big rays overlap gives two different travel times.

e Figure 11 : All the big rays (74) and their meshes displayed together. Zones where
they overlap are dense and are the locus of multi-valued-ness.

e Figure 12 : Traces of the travel times at the surface grid points of the model (x
versus travel-time). Left : a ray tracing solution (given in [16]). It is obtained using a
shooting and a two point ray tracing method. Right : solution obtained by considering
the travel time computed in all the big rays at the surface (¢ = 0) and interpolated on
a 384 regular grid.

e Figures 13,14,15,16,17 : Comparison with the snap shots (on the left) of a wave equa-
tion resolution in the same model. The wave equation (in the time domain) is solved
using a second-order finite-difference scheme with higher order absorbing boundary
conditions [10]. The source is localized in space and a 23Hz Gaussian derivative in
time.

On the right all the big rays solutions have been interpolated on a 384 by 122 grid.
this gives a multi-valued travel-time field on a regular grid. We then select the front’
given by the travel times matching the time of the corresponding snap shot with a
tolerance of 0.005 seconds. Even though the wave equation solution is band limited
in frequency and our solution represent the high frequency asymptotic the kinematics
are in very good accordance.

RR n~°3019
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General comments on the numerical results

Figure 12 shows that we are able to recover the three principal zones of multi-valued-ness
at the surface. There are actually two superposed triplication in the middle one. All these
triplications can be anticipated from the ray tracing of figure 2 where three focal zones can
be identified. Note also that the ray tracing solution has difficulties in zones of geometrical
spreading on the furthermost right and left side of the figure.

Even though the wave equation solution is band limited in frequency and our solution
represents the kinematics (phase) of the high frequency approximation of the wave equation,
the results are in very good accordance (figure 13,14,15,16,17). The leading edges of the
waves match our travel time contours.

Note that we recovered a distinct second front on the right of the model in a region
of somewhat complicated geometrical spreading. As can be seen on the figure 2 this front
certainly corresponds to ‘S’ shaped rays (only one in the ray tracing) which are reflected
twice by two different heterogeneities.

Finally, lest us mention that the eikonal solver failed to converge on two very thin rays.
This explains the inconsistent black spots on figures 14.

6 Conclusion

We want first to emphasize that the method does not rely on any a priori (qualitative or
quantitative) information on the solution. All steps of the algorithm can be completed on
any (smooth) velocity model. Qur big ray strategy adapt itself to the nature of the solution.
In a zone with a low density of rays, big rays will be big and generally the solution is single
valued, the eikonal solver then acts as an ’exact’ interpolator. In a zone where a lot of rays
are crossing, several big rays will superpose, selecting the different *waves’, or families of rays,
which interact in this area. We automatically restrict our resolution to the support of the
solution in phase space. It guarantees in particular that there are no useless computations.
The big ray method is a natural way of domain decompose (if needed) a big problem into
smaller subproblem which can be solved in parallel.

The main theoretical and numerical difficulty lies in the construction of the big rays. We
currently rely on the information given by the state constrained optimal control. It provides
a vague definition of a big ray as a domain which, for every point, strictly contains only one
of the rays arriving at that point. By no mean are we claiming that the current strategy
for building the big rays is optimal. A better algorithm should certainly incorporate the
computation of the amplitudes. The geometry of caustics would then be known (where the
amplitude blows up). Incorporating this information in the definition of the big rays may
be useful to remove some of the current difficulties.

The 3-D extension of this method is in perspective. The Soner boundary condition will
remain the same. The eikonal solver can be generalized to 3-D. The main difficulty will

INRIA
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again be the construction and meshing of the big rays.

There are several directions which can be pursued to speed up the method. First, an
implicit version of this scheme can be implemented which would allow to pick up larger
time step. An obvious remark is also the underlying parallel feature of the algorithm : the
generation of each big ray and the resolution of the eikonal equation can be done separately,
hence in parallel.
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residence at the Courant institute of Mathematical Science, New York, on leave from INRTA
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A The big rays

Big rays generation First a ray tracing is performed in the model form the source point.
We trace nr rays with initial direction discretizing an initial opening angle [—6,6]. The
initial direction of the i*" ray is X;(0) = (cos(;), sin(6;)) with 6; = —0 + i x 2. We then
have nr rays labeled R; for ¢ = 1,...,nr. Each ray is a set of point defining a broken line
from the source to the point where the ray exit the global computational domain.

Each big ray is defined as the envelope of three successive rays. More precisely, it is
the smallest closed and connected domain containing these three rays and bounded by the
boundary of the global computation domain. The chances of encountering a true focal point
common to these three rays is very small. It therefore guarantees that the big ray will keep
a minimum thickness. We build int(25t) big rays labeled Brj, for j = 1,...,int(25).
Big ray Br; is built using rays three rays R;, i =2%(j — 1)+ k and k =1,2,3.

The big ray is an approximation of the envelope of all the rays shot in the initial cone
of directions defined by the first and third considered ray. It should hope be a domain for
which all these rays are turned into global minima for the state constrained optimal control
problem stated in section 2. The viscosity solution then gives the corresponding travel-time.

This strategy aims at decomposing the phase space. This can be seen near the source
point where there is no multivaluedness. The big rays have no overlap. Every potential
ray shot in the initial opening angle of the experiment ’lives’ only in one big ray. When
multivaluedness occurs, the different branches of the multi-valued solutions are split and
live in different big rays which overlap in the physical space. Zones where big rays overlap
correspond to the physical domain where multi-valued travel occurs.

Meshing of the big rays Meshing these big rays was done using Matlab PDE toolbox
[14]. We wrote a script automatically taking into account the different cases when rays are
crossing or not.

We logically compute all the zones in the big rays bounded by rays or segments of rays.
Then we get rid of all the points on these rays which are strictly contained in the big ray.
Finally we mesh the big ray. The mesher is based on a Delaunay algorithm.

In the case where the three rays are close and therefore the big ray thin, the meshing
may need very small triangles. In order to avoid situations where the big ray would be only
one triangle thick, we systematically refine the mesh by splitting every triangle into four
triangles. This is done twice.

INRIA
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B Description of the eikonal solver

The aim of this section is to provide a detailled formulation of the scheme. We are given
a triangulation of a domain 2. The source term S belongs to 2. The nodes are listed
M;,i=1,...,n,, the triangles are T},j = 1,...,n,.

Hence the data structure is given by a set of nodes given by their coordinate (z(3),y(4),i =
1,...,ns, aset of triangles given by the index in the previous list of their nodes (nu(j, 1), nu(y,2),n(j,3),7 =
1,...,n:) and a set of boundary type (log(i),i = 1,...,ns) determining whether the point
is in the interior, on the boundary or a source point.

We define a pointer between the nodes {M;} and the set of triangles N; = {le, ... ,T;“"}
of all the triangles that have M; as vertex. For each node, we compute the interior radius p;
of the molecule My = U cp, 7| (see figure 18). In practice, we take the maximum on 7' € N;
of the distance between M; and the side of T opposite to M;.

Now, given the data wu;, we consider its piecewise linear interpolation still denoted by u,
u(M;) = u;. In each triangle T with the nodes M;, , M;,, M,,, the restriction of w in T is the
only linear polynomial

39
T T T
U|T = UilAl + uilAQ + UilA3

where for k = 1,2,3, AT(M,;,) = 1 if M;, = M,, and 0 else. The A} are nothing but than
the barycentric coordinates with respect to triangle T as in standard finite element methods.
The gradient of u is constant 7" and given by

Vru= uiIVAf + g, VAQT + ui1VA3T.

The terms VAT, 1 =1,...3 can be recomputed.
Then, for each node M; belonging to T, we consider the angle at M;, namely 67, and

we define
0:;= > 0.
TEN;

Of course O, = 27, except when log(M;) > 0, i.e. M, is on the boundary. In this case N;
only contains triangles which are inside the domain. This is important with regard to the
Soner boundary condition as we will see below.

We can now define the numerical Hamiltonian
HM), 1) 2= HVT T, Vi 1) = 6] = 52 e of VT \7,

Z GiTVTu

TEN;
Ui — eﬁh
T
0:
ozZT L

Sy

:tanT
T=%(W+W)
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Figure 18: Geometrical elements for the Hamiltonian

The points {M;, M', M"'} are the three vertices of T', see Figure 18.

The algorithm is the following. We initialize u{ = 0 and set a stopping criterion called
Res to a very large value and assign a threshold to a small one (typically 102). The loop
in time is

until ( Res < Tol) do ! until convergence
fori=1,...,ns do ! Loop on mesh points
If(M; = S) then ! Special treatement for the source point
ultt =0
else
Compute At; ! Compute the local time step, see below
ultt = u? — At (H(M;,u™) — n(x,y:)) ! Evolution step
Res = max(Res, H(M;,u™)) ! Compute the residual for the convergence test
end if
end do
end until

We just have to specify how to compute the local time step At;. The terminology “local”
comes from a Computational Fluid Dynamic technique devoted to the calculation of steady
flows. In these calculations, as it is the case here, the time should be seen as an iteration
parameter and is completely artificial. Hence, the best time step should be the one which
maximizes the convergence speed of the scheme. Given two different mesh points, the “time
steps” for these two points have no reason to be equal since they are chosen to guaranty the
stability of the scheme via relation (10)

At; _
Pi

CFL < (10)

DN | =
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and the Courant Friedrisch Lewy number, CF'L is uniform throughout the domain. In prac-
tice the relation (10) can be relaxed to CFL < 1. In (10), p; is the diameter of the molecule
M, and is computed as suggested above.

At steady state, the solution depends on a local domain in the “upwind” direction given
by the rays of the geometrical optics. This is why the Lax-Friedrich scheme has two terms.
The dissipation ((}I 2 ien: al'Vru) introduced in the numerical Hamiltonian is the quantity

needed to balance the ’destabilizing’ effect of the ’average’ U;. This last term is ’destabiliz-
ing’ because part of its support is generally outside the “upwind” domain of dependence of
the solution. In that sense, the Lax Friedrichs scheme is not stricto sensu an upwind scheme,
as would be the Godunov scheme for example, but the amount of dissipation is tuned to
damp the ’destabilizing’ effect of U;.

With the Soner boundary condition the rays are implicitly assumed to cut the boundary
or be tangent to it. In that case the automatic restriction to the computational domain
in the definition of the numerical Hamiltonian takes into account the absence of “upwind”
contribution from the outside. The Soner boundary condition is automatically taken into
account [1].

Remark 1 The expression of the numerical Hamiltonian can be simplified provided the data
structure is slightly modified. Now, for each node M;, together with N;, we consider S; the
list of edges [M;, M}] where M; is one end point. It can be seen that

HMy, M) =gl = > o (m-ny).
M), M ]€S,

The value oF is defined as follows: [M;, My] is the common edge between two triangles T
and T (in N;), and
p_ o+ al
o = ————
¢ 2
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C A second order scheme

This scheme is derived from the first order one. The main loop is replaced by

until ( Res < Tol) do
fori=1,...,ns do
If(M; = S) then
uﬁ'+1 = O
else
Ati -
nt1/2 _ o At )\
4 () 1)
uf =t = At (RS (). 1))
Res = max(Res, H(M;,u"))
end if

end do
end until

What is left is to define H;’\ and H;"\’Lm/e. We set

H = H(VZ N, Vi ol
HyNToIE = H(Vp, M\tecre, VT n 0o 1\F/€).

In other words, we use the same numerical Hamiltonian as for the first order scheme with
different values of the gradient of u in the triangles of IV, evaluated at the times ¢,, = nAt
and t,41/2 = (n+1/2)At. This allows more modularity, and the only remaining thing is to
define these new gradients.

This is done via the Essentially Non Oscillatory (ENO) technique [21]. Instead of in-
terpolating u by a piecewise linear polynomial, we interpolate u in each triangle T by a
quadratic polynomial. However, since singularities can be expected (the solution is not ev-
erywhere continuously differentiable in general), we cannot use a fixed stencil to compute
this quadratic polynomial : it can be shown that such a scheme would be unstable. Since
their location is not known a priori, an adaptive strategy is employed to avoid the potential
singularities.

For any triangle T, we consider the family of four stencils as on Figure 19 They are
constructed as follow, with the constraint that any such family should contain the three
vertices of T'. Any triangle 7" has 3 edges. If it is not too close from the boundary, then
each edge of T belongs to 2 triangles : T and 77 or 75 or T3 as on Figure 19. Consider, for
1 =1,..,3, each construction with 7" and T;. T; has 3 edges, then it is possible in general
to find 2 new triangles, named T and T}'. The family T,T;,T/,T/'} has 6 distinct nodes
which constitute the stencils S (for i =1,..,3). We construct a fourth stencil, S\uvAy as
on Figure 19. Of course, if we are too close to the boundary, this procedure breaks down.
This case happens only when the triangle 7" has at least one vertex on the boundary. In this
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Figure 19: The four potential stencils
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case, we switch back to the first order scheme.

Now taking any stencil, with its 6 vertices, it is possible in general to compute a polyno-
mial of degree 2, so that we have 4 polynomials P in hand for each triangle. It interpolate
the data at these 6 points. If (a,b) are the coordinate of any point of the stencil, we write

P(z,y) = ap + a1(z — a) + ax(y — b) + as(x — a)® + as(x — a)(y — a) + as(y — a)*.

Among the 4 polynomials, we select the one, PZ. which minimizes

min
las| + [aa| + |as|.

This ensures that we have picked up the smoothest quadratic approximation of the gradient.
Then the argument Vpu™, T} € N; is

Vrur = VP, (M,).

m

More details on the calculation of P,,;, can be found in [3].
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