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Abstract. In this article we consider an optimal control problem of a semi-
linear elliptic equation, with bound constraints on the control. Our aim is

to characterize local quadratic growth for the cost function J in the sense

of strong solutions. This means that the function J growths quadratically
over all feasible controls whose associated state is close enough to the nominal

one, in the uniform topology. The study of strong solutions, classical in the

Calculus of Variations, seems to be new in the context of PDE optimization.
Our analysis, based on a decomposition result for the variation of the cost,

combines Pontryagin’s principle and second order conditions. While these two

ingredients are known, we use them in such a way that we do not need to
assume that the Hessian of Lagrangian of the problem is a Legendre form, or

that it is uniformly positive on an extended set of critical directions.

Introduction

Over the last decades important progress has been done in the field of optimal
control of Partial Differential Equations (PDEs). In the case of a semi-linear elliptic
equations, we have particularly in mind (i) the extensions of Pontryagin’s minimum
principle [28], the first papers being due to [29], and then [4, 6, 7], and (ii) the theory
of second order optimality conditions for weak minima [3, 12, 13, 14, 15, 16, 18, 19,
31]. By weak minimum we mean that optimality is ensured in a L∞- neighborhood
in the control space (sometimes local optimality can be established in an L2 space,
see [17]).

To be more precise, regarding second order optimality conditions, the authors
of this article are aware of two sufficient conditions that imply local quadratic
growth for the cost function in the weak sense. This means that the cost growths
quadratically, with respect to the L2-norm, in a feasible L∞- neighborhood of the
nominal control. Both aforementioned conditions ask that a weak form of the
Pontryagin’s principle is satisfied, while they differ on the second order condition.
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In references [3, 12] it is supposed that the Hessian of the Lagrangian of the problem
is a Legendre form and that it is uniformly positive over a cone of critical directions,
which is exactly the cone provided by second order necessary conditions. On the
other hand, in references [13, 14, 15, 16, 18, 19, 31] the Legendre form assumption
is not needed, but it is required a uniform positivity condition of the Hessian of the
Lagrangian over a slightly larger cone than the critical one.

This paper is devoted to the study of strong solutions for the optimal control
problem of a semi-linear elliptic equation with Dirichlet boundary conditions, under
bound constraints on the controls. By strong solutions we mean, as in the classical
Calculus of Variations, optimality in a L∞ neighborhood in the state space only.
Thus, the neighborhoods are considered in the state space rather than in the control
space, which is the setting of weak solutions (see Definition 1.6).

The motivation for studying strong solutions is quite the same as in the classical
Calculus of Variations. By the definition, a strong solution remains optimal over a
much larger set than a weak one. The standard needle perturbation argument can
be applied for these types of solutions, which implies that the Pontryagin’s principle
holds true (see [4, 6, 7, 29] and Section 3.1). Moreover, since a strong solution is in
particular a weak solution, it satisfies the classical second order necessary optimality
condition (see e.g. [18, 3] and Section 3.2). One of the goals of this article is to
prove that a sort of converse assertion holds true: If a strict form of the Pontryagin
principle and the standard second order sufficient condition are verified at a control
ū, then this control is a strong solution.

Let us also mention that Pontryagin’s principle, which is a consequence of strong
optimality, is used in some numerical algorithms for solving optimal control prob-
lems. We refer the reader to [5] in the framework of Ordinary Differential Equations
(ODEs) and to [2] for the infinite dimensional case.

In this article, we are particularly interested in providing a characterization of
local quadratic growth for the cost function in the strong sense. This means that
quadratic growth for the cost, with respect to the L2-norm, holds over all feasible
controls whose associated states are uniformly close to the nominal one. Our main
result is Theorem 3.24 which states that local quadratic growth for the cost holds
in the strong sense at u if and only if the Hessian of Lagrangian of the problem is
uniformly positive over the cone of critical directions, and the Hamiltonian satisfies
a global quadratic growth property at u. Since this is the first result in this direction
for the PDE framework, we decided to present it in the rather simple framework of
bounds constraints. Important extensions like non-local constraints over the control
and state constraints will be addressed in future works.

The proof of Theorem 3.24 relies on the combination of Pontryagin’s minimum
principle and second order conditions, which is possible thanks to the extension
of a decomposition result in [8, Theorem 2.14] to the elliptic framework. Roughly
speaking, the decomposition result obtained in Theorem 2.5 and its Corollary 2.6
says that the variation of the cost function under a perturbation of the control can
be expressed as the sum of two terms: the first one is the variation due to a large
perturbation in the L∞-norm but with support over a set of small measure, while
the second one corresponds to the variation due to a perturbation small in the
L∞-norm. The key elements in the proof of the decomposition result are the well
known regularity estimates from the Ls-theory of linear elliptic equations (see e.g.
[22]).
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The article is organized as follows: in Section 1 we set some useful notations,
recall some basics facts about linear and semi-linear elliptic equations, define the
optimal control problem (CP) and set some standard assumptions over the data.
Estimates of Section 1 are used in Section 2 to provide first and second order
expansions for the state and cost functions. The latter are expressed in terms of
an associated Hamiltonian. The novelty of this section is Theorem 2.5, where the
decomposition result is proved. Section 3 begins with the statement and proof of
an extension of the standard Pontryagin’s minimum principle. This result allows us
to show that weak local solutions satisfy a local Pontryagin’s minimum principle.
Next, after recalling some well-known facts about necessary conditions for weak
solutions, we prove in Theorem 3.17 that if local quadratic growth for the cost
holds at u in the strong sense, then u satisfies a strict Pontryagin inequality and the
associated quadratic form, i.e. the Hessian of the Lagrangian of (CP), is uniformly
positive over the cone of critical directions. Regarding sufficient conditions, the
decomposition result allows us in Theorems 3.20 and 3.23 to extend to the strong
sense, respectively, Theorems [3, Theorem 2.9] and [18, Theorem 2]. Finally, in
Theorem 3.24 we characterize the local quadratic growth in the strong sense, i.e. we
provide the converse implication of Theorem 3.17. In order to prove the result, we
adapt the technique of projection on the pointwise critical cone due to [8, Theorem
5.5]. The article concludes with an appendix containing the proofs of some technical
lemmas of Sections 2 and 3.

1. Problem statement and preliminary results.

We first fix some useful notations. For a function ψ : Rd → R (d ∈ N), a nominal
x̄ ∈ Rd and a perturbation z ∈ R, we set ψxi(x̄)z := Dxiψ(x̄)z for i = 1, . . . , d.
Analogously, for z1, z2 ∈ R we use the following convention

(1.1)
ψxixi(x̄)z2

1 := D2
xixiψ(x̄)(z1, z1), ψxixj (x̄)z1z2 := D2

xixjψ(x̄)(z1, z2),

ψ(xi,xj)2(x̄)(z1, z2)2 := ψxixi(x̄)z2
1 + 2ψxixj (x̄)z1z2 + ψxjxj (x̄)z2

2 .

From now on, we fix a non-empty bounded open set Ω ⊆ Rn (n ∈ N) with
a C1,1 boundary and for s ∈ [1,∞], k ∈ N, we denote by ‖ · ‖s and ‖ · ‖k,s the
standard norms in Ls(Ω) and W k,s(Ω), respectively. For any Borel set A ⊆ Rn we
denote by |A| its Lebesgue measure (not to be confused with the same notation
for the absolute value in R) and when a property holds for almost all x ∈ Ω,
with respect to the Lebesgue measure, we use the abbreviation “for a.a. x ∈ Ω”.
Given g1, g2 : L∞(Ω) → [0,∞), we use the notation g1(·) = O(g2(·)) to indicate
the existence of a constant c > 0 such that g1(·) ≤ cg2(·). Given two sequences
ak, bk ∈ [0,∞] we say that bk = o(ck) if there exists a sequence ck ∈ [0,∞), with
ck → 0 as k ↑ ∞, such that bk = ckak.

For future reference we recall the following Sobolev embeddings (cf. [1], [20],
[22]):
(1.2)

Wm,s(Ω) ⊆


Lq1(Ω) with 1

q1
= 1

s −
m
n if s < n

m ,

Lq(Ω) with q ∈ [1,+∞) if s = n
m ,

Cm−b
n
s c−1,γ(n,s)(Ω) if s > n

m ,
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where the injections are continuous and γ(n, s) is defined as

(1.3) γ(n, s) =

{
bns c −

n
s + 1, if n

s /∈ Z,
any positive number < 1 if n

s ∈ Z.

The next well known regularity result for linear elliptic equations will be very useful.

Theorem 1.1. Let R > 0 be given. Consider the following Dirichlet problem

(1.4)

{
−∆z + α(x)z = f(x) in Ω,

z = 0 on ∂Ω,

where α ∈ L∞(Ω) satisfies α(x) ≥ 0 for a.a. x ∈ Ω, and ‖α‖∞ ≤ R. Then, for
every s ∈ (1,∞) and f ∈ Ls(Ω), equation (1.4) admits a unique strong solution z ∈
W 2,s(Ω) ∩W 1,s

0 (Ω) and there exists cs = cs(R) > 0 such that for every f ∈ Ls(Ω),

(1.5) ‖z‖2,s ≤ cs‖f‖s.

Moreover, there exists c1 = c1(R) > 0 such that the following L1-estimate holds
true

(1.6) ‖z‖1 ≤ c1‖f‖1.

Remark 1.2. The proof of (1.5) can be found in [22, Theorem 9.15 and Lemma
9.17] while (1.6) is a corollary of Stampacchia’s results in [32] (see also [11, Lemma
2.11] for a simple proof). By the Sobolev embeddings (1.2), inequality (1.5) implies
that if s > n/2 (s = 2 if n ≤ 3), then z ∈ C(Ω) and ‖z‖∞ ≤ cs‖f‖s.

In this work, we are concerned with the following controlled semi-linear elliptic
equation:

(1.7)

{
−∆y + ϕ(x, y, u) = 0 in Ω,

y = 0 on ∂Ω,

where ϕ : Ω × R × R → R. For a, b ∈ C(Ω) with a ≤ b in Ω, we suppose that the
controls u take values in the set K of admissible controls:

(1.8) K = {u ∈ L∞(Ω) | a(x) ≤ u(x) ≤ b(x), for a.a. x ∈ Ω} .

Let us denote by M := max{‖a‖∞, ‖b‖∞}. We will assume the following assump-
tion:

(H1) The function ϕ is continuous and satisfies:

(i) For all x ∈ Ω we have that ϕ(x, ·, ·) is C1. Moreover, uniformly on x ∈ Ω we
have that

(i.1) D(y,u)ϕ(x, 0, 0) is bounded;
(i.2) D(y,u)ϕ(x, ·, ·) is Lipschitz on bounded sets.

(ii) For all (x, y) ∈ Ω× R and |u| ≤M , we have ϕy(x, y, u) ≥ 0.

Example 1.3. A typical example of ϕ satisfying (H1) is ϕ(x, y, u) = g(y)+u+f(x),
where f ∈ C(Ω), and g ∈ C2(R) and satisfies gy ≥ 0.

The following result is well known (see e.g. [25, Chapter 5, Proposition 1.1]).
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Proposition 1.4. Under (H1), for every u ∈ K and s ∈ (n/2,∞), equation (1.7)

has a unique strong solution yu ∈ W 1,s
0 (Ω) ∩W 2,s(Ω). In particular, we have that

yu is continuous. Moreover, there exists a constant Cs depending only on s, such
that

(1.9) ‖yu‖∞ + ‖yu‖2,s ≤ Cs, for all u ∈ K.

Consider a function ` : Ω× R× R→ R and assume that:

(H2) The function ` satisfies the same assumptions for ϕ in (H1) except for (ii).

Let us define the cost function J : L∞(Ω)→ R by

(1.10) J(u) :=

∫
Ω

`(x, yu(x), u(x))dx.

In this work we are concerned with the following optimal control problem:

min J(u) subject to u ∈ K. (CP)

Remark 1.5. The existence of a global solution ū ∈ K (i.e. J(ū) ≤ J(u) for all
u ∈ K) of (CP) can be proved only for specific structures (see e.g. [21, Chapter
1] and [33, Chapter 4]). In particular, if v ∈ R → φ(x, y, v) ∈ R is affine, v ∈
R → `(x, y, v) ∈ R is convex and continuous and (H1)-(H2) are satisfied, then
there exists at least one global solution ū of (CP). In what follows, we assume the
existence of (weak or strong) local solutions (see Definition 1.6).

As we will see in the next section, assumptions (H1)-(H2) will allow us to obtain
well known first order expansions for the state and the cost functions. However, in
order to provide second order expansions we will need the following assumption:

(H3) For all x ∈ Ω and ψ = ϕ, `, we have that ψ(x, ·, ·) is C2. Moreover, uniformly
on x ∈ Ω we have that

(i) D2
(y,u)2ψ(x, 0, 0) is bounded; (ii) D2

(y,u)2ψ(x, ·, ·) is locally Lips-

chitz.

See Example 3.21 for a typical problem satisfying (H1)-(H3). We end this section
by recalling the notion of weak and strong local solutions and the so-called local
quadratic growth conditions for J .

Definition 1.6. For a fixed u ∈ K and s ∈ [1,∞), we say that:
(i) u is a Ls-weak local minimum (weak local minimum if s =∞) of J on K if there
exists ε > 0 such that

(1.11) J(u) ≥ J(u) for all u ∈ K with ‖u− u‖s ≤ ε.

In this case we also speak of Ls-weak local solution (weak local solution if s = ∞)
of (CP).

(ii) u is a strong local minimum of J on K if there exists ε > 0 such that

(1.12) J(u) ≥ J(u) for all u ∈ K with ‖yu − yu‖∞ ≤ ε.

In this case we also speak of strong local solution of (CP).

The following remark exploits the fact that the set K is bounded in L∞(Ω).
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Remark 1.7. (i) Let 1 ≤ p < q <∞. We claim that Lp(Ω) and Lq(Ω) have the same
topology (open sets) on K. Indeed, since Ω is bounded it is known that Lq(Ω) ⊂
Lp(Ω) with continuous injection, proving that each subset of K that is (relatively)
open in Lp(Ω) is open in Lq(Ω). On the other hand, for M = max(‖a‖∞, ‖b‖∞)
and u ∈ K, we have ‖u‖qq ≤Mq−p‖u‖pp, proving that each open set of Lq(Ω) ∩K is
open in Lp(Ω) ∩ K.
(ii) It follows that the notion of Ls-weak local solution is equivalent for all s ∈ [1,∞).
In this case we simply speak of L1-weak local solution. Obviously, any L1-weak
local solution is a weak local solution.
(iii) In Lemma 2.1, stated in next section, we check that ‖yu−yu‖∞ = O(‖u−u‖s)
for all u, u ∈ K and s ∈ (n/2,∞). Therefore, every strong local solution is a
Ls-weak local solution and, in view of point (ii), is also a L1-weak local solution.

We now define the corresponding types of local quadratic growth for J at u ∈ K.

Definition 1.8. Given u ∈ K and s ∈ [1,∞), we say that:
(i) J has local quadratic growth on K at u in the Ls-weak sense (in the weak sense
if s =∞) if there exists α, ε > 0 such that

(1.13) J(u) ≥ J(u) + α‖u− u‖22 for all u ∈ K with ‖u− u‖s ≤ ε.

(ii) J has local quadratic growth on K at u in the strong sense if there exists α, ε > 0
such that

(1.14) J(u) ≥ J(u) + α‖u− u‖22 for all u ∈ K with ‖yu − yu‖∞ ≤ ε.

Remark 1.9. In view of Remark 1.7, local quadratic growth in the Ls-weak sense is
equivalent to the local quadratic growth in the L1-weak sense. The latter implies
local quadratic growth in the weak sense, and it is implied by local quadratic growth
in the strong sense.

2. Expansions for the state and the cost functions

In this section, we establish first and second order expansions for the state and
the cost functions. The novelty is Theorem 2.5 where a decomposition result for
the variation of the cost is provided. In the entire section, we fix some u ∈ K and
we set ȳ := yu for its associated state. For notational convenience, we often omit
the dependence on x of certain functions such as yu(·) and u(·).

2.1. First order expansions. We define the Hamiltonian H : Ω× R3 → R asso-
ciated to (CP) by

(2.1) H(x, y, p, u) = `(x, y, u)− pϕ(x, y, u).

The adjoint state p̄, associated to u, is defined as the unique solution in H1
0 (Ω)∩

C(Ω) of

(2.2)

{
−∆p = Hy(x, y, p, u) in Ω,

p = 0 on ∂Ω.

Let us now fix some useful notation. For ψ = `, ϕ, when there is no ambiguity,
we write ψ(x), ψy(x), ψu(x), ψyy(x), ψyu(x) for the value of ψ, ψy, ψu, ψyy, ψyu
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on (x, ȳ(x), u(x)), respectively. Similar notations are used for H and its deriva-
tives evaluated at (x, y(x), p(x), u(x)), for example H(x) := H(x, y(x), p(x), u(x)).
Moreover, for a fixed u ∈ K we set
(2.3){
δψ(x) = ψ(x, y(x), u(x))− ψ(x), δψy(x) = ψy(x, y(x), u(x))− ψy(x),

δH(x) = H(x, y(x), p(x), u(x))−H(x), δHy(x) = Hy(x, y(x), p(x), u(x))−Hy(x).

The first order Pontryagin linearization z1[u] of u ∈ K → yu ∈ H1
0 (Ω) ∩ C(Ω) in

the direction u− u is defined as the unique solution in H1
0 (Ω) ∩ C(Ω) of

(2.4)

{
−∆z1 + ϕy(x)z1 + δϕ(x) = 0 on Ω,

z1 = 0 in ∂Ω.

For a fixed u ∈ K, set

(2.5) δu := u− u, δy[u] = yu − y, d1[u] = δy − z1[u].

When the context is clear, we will write z1 = z1[u], δy = δy[u], d1 = d1[u]. The
next lemma is proved in the appendix.

Lemma 2.1. Under (H1)-(H2), for every s ∈ (n/2,∞) (s = 2 if n ≤ 3) we have:

(2.6)


‖δy‖1 = O(‖δu‖1), ‖δy‖2 = O(‖δu‖2), ‖δy‖∞ = O(‖δu‖s),
‖z1‖1 = O(‖δu‖1), ‖z1‖2 = O(‖δu‖2), ‖z1‖∞ = O(‖δu‖s),
‖d1‖1 = O(‖δu‖1‖δu‖s), ‖d1‖2 = O(‖δy‖∞‖δu‖2).

We now provide a first order expansion of the cost function. For future reference,
we note that multiplying (2.4) by p, integrating by parts and using the adjoint
equation, we get (recalling (2.3))

(2.7)

∫
Ω

`y(x, y, u)z1dx+

∫
Ω

δϕ(x)p dx = 0.

Lemma 2.2. Under the assumptions of Lemma 2.1 we have, recalling (2.3):

J(u)− J(u) =

∫
Ω

δH(x)dx+O(‖δy‖∞‖δu‖2),(2.8)

J(u)− J(u) =

∫
Ω

δH(x)dx+O(‖δu‖1‖δu‖s).(2.9)

Proof. By doing a Taylor expansion for `, we get the following equalities:

J(u)− J(u) =

∫
Ω

[`(x, y, u)− `(x, y, u)] dx =

∫
Ω

[`(x, y, u)− `(x, y, u) + δ`(x)] dx,

=

∫
Ω

[`y(x, y, u)δy + δ`(x)] dx+O

(∫
Ω

|δy|2dx

)
,

=

∫
Ω

[`y(x, y, u)δy + δ`y(x)δy + δ`(x)] dx+O

(∫
Ω

|δy|2dx

)
.

Since `y is uniformly Lipschitz, we have |δ`y(x)| = O(|δu(x)|), hence, introducing
z1 leads to:

J(u)− J(u) =

∫
Ω

[`y(x, y, u)z1 + δ`(x)] dx+O

(∫
Ω

[
|δy|2 + |δuδy|+ |d1|

]
dx

)
.
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Using (2.7), we get:

(2.10) J(u)− J(u) =

∫
Ω

δH(x)dx+O

(∫
Ω

[
|δy|2 + |δuδy|+ |d1|

]
dx

)
.

Using that ‖d1‖1 ≤ |Ω|1/2‖d1‖2, Lemma 2.1 implies that∫
Ω

(
|δy|2 + |δuδy|+ |d1|

)
dx = O (‖δu‖1‖δy‖∞ + ‖δu‖2‖δy‖∞) = O (‖δu‖2‖δy‖∞) ,

which proves (2.8). Similarly, combining (2.10) and Lemma 2.1 yields to (2.9). �

2.2. Second order expansions for the state and the cost function. The
second order Pontryagin linearization z2[u] of u ∈ K → yu ∈ H1

0 (Ω) ∩ C(Ω) in the
direction u− u is defined as the unique solution in H1

0 (Ω) ∩ C(Ω) of

(2.11)
−∆z2 + ϕy(x)z2 + 1

2ϕyy(x)(z1[u])2 + δϕy(x)z1[u] = 0 in Ω,
z2 = 0 on ∂Ω,

where z1[u] is defined by (2.4) and we recall the notations (1.1) and (2.3). Let us
define (recall (2.5))

(2.12) d2[u] := δy[u]− (z1[u] + z2[u]) = d1[u]− z2[u].

When the context is clear, we will write z2 = z2[u] and d2 = d2[u]. The next lemma
is proved in the appendix.

Lemma 2.3. Under (H1)-(H3) we have ‖d2‖1 = O(‖δy‖∞‖δu‖22).

Given sequence uk ∈ K, let us set (recall (2.4))

(2.13) δku := uk − u, yk := yuk , δky = yk − y and zk1 := z1[uk],

with a similar convention for zk2 , dk1 and dk2 . We also set
(2.14)

δHk(x) = H(x, y(x), p(x), uk(x))−H(x), δHk
y (x) = Hy(x, y(x), p(x), uk(x))−Hy(x)

with an analogous notation for δ`k, δϕk and their derivatives. We now prove the
following second order expansion of the cost.

Proposition 2.4. Suppose that (H1)-(H3) hold true and that ‖δku‖2 → 0. Then,
we have that

(2.15) J(uk)− J(u) =

∫
Ω

[
δHk(x) + δHk

y (x)zk1 + 1
2Hyy(x)(zk1 )2

]
dx+ o(‖δku‖22).

Proof. Writing `(x, yk, uk)− `(x, y, u) = `(x, yk, uk)− `(x, y, uk) + δ`k(x), a Taylor
expansion gives

J(uk)−J(u) =

∫
Ω

[
δ`k(x) + `y(x, y, uk)δky + 1

2
`yy(x, y, uk)(δky)2

]
dx+O

(∫
Ω

|δky|3dx

)
.

Using that `yy(x, ·, ·) is locally Lipschitz, we get

J(uk)− J(u) =
∫

Ω

[
δ`k(x) + δ`ky(x)δky + `y(x, y, u)δky + 1

2
`yy(x, y, u)(δky)2

]
dx

+O
(∫

Ω
[|δky|2|δku|+ |δky|3]dx

)
.

Introducing zk1 , zk2 and using that `y(x, ·, ·) is locally Lipschitz gives:
∫

Ω
δ`ky(x)δky dx =

∫
Ω
δ`ky(x)zk1 dx+O

(∫
Ω
|δku‖dk1 | dx

)
,∫

Ω
`y(x, y, u)δky dx =

∫
Ω
`y(x, y, u)(zk1 + zk2 ) dx+O(

∫
Ω
|dk2 | dx),∫

Ω
`yy(x, y, u)(δky)2 dx =

∫
Ω
`yy(x, y, u)(zk1 )2 dx+O

(∫
Ω
|dk1(δky + zk1 )| dx

)
.
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Lemmas 2.1 and 2.3 yield:∫
Ω

(
|δku||dk1 |+ |dk2 |+ |dk1 ||δky|+ |dk1 ||zk1 |+ |δky|2|δku|+ |δky|3

)
dx = O(‖δky‖∞‖δku‖22).

On the other hand, by Remark 1.7, ‖δky‖∞ → 0 when ‖δku‖22 → 0, so that
(2.16)
J(uk)− J(u) =

∫
Ω

[
δ`k(x) + δ`ky(x)zk1 + `y(x, y, u)(zk1 + zk2 ) + 1

2
`yy(x, y, u)(zk1 )2

]
dx

+o(‖δku‖22).

Multiplying (2.11) by p and integrating by parts gives

(2.17)

∫
Ω

`y(x, y, u)zk2 dx+

∫
Ω

1
2ϕyy(x, y, u)(zk1 )2p dx+

∫
Ω

δϕky(x)zk1p dx = 0.

We conclude by combining (2.7) and (2.17) with (2.16). �

2.3. A Decomposition result. Our aim is to prove in this section Theorem 2.5
and Corollary 2.6 which roughly say that the effect of small perturbations on the
control in the L2-norm can be decomposed as the effect of a small perturbation in
the L∞-norm and the effect of perturbations which can be large in the L∞ norm
but are supported on sets of small measure.

For a sequence uk in K, we use the notation introduced in (2.13). Let us suppose
that ‖δku‖2 → 0 as k ↑ ∞ and consider a sequence of measurable sets Ak and Bk
such that

(2.18) |Ak ∪Bk| = |Ω|, |Ak ∩Bk| = 0 and |Bk| → 0.

We decompose the sequence uk into uAk and uBk defined by :{
uAk = uk on Ak, uAk = u on Bk,
uBk = u on Ak, uBk = uk on Bk.

We set

(2.19) δAku := uAk − u, δBku := uBk − u and hence δku = δAku+ δBku.

Let us set zAk := z1[uAk ] and zBk := z1[uBk ]. Since |Ak ∩ Bk| = 0 we have, by
uniqueness of the Dirichlet problem, that zk1 = zAk + zBk . From (1.5), we obtain

(2.20) ‖zAk‖2,s ≤ cs‖δAku‖s, ‖zBk‖2,s ≤ cs‖δBku‖s for all s ∈ (1,∞).

We have the following decomposition result (recall the notations (2.13) and
(2.14)):

Theorem 2.5. Suppose that (H1)-(H3) hold true and let u ∈ K. Let uk ∈ K
be such that ‖δku‖2 → 0, and Ak, Bk and δAku, δBku be as in (2.18) and (2.19),
respectively. If ‖δAku‖∞ → 0, then (recalling (2.14))

(2.21) J(uk)− J(u) =

∫
Bk

δHk(x)dx+

∫
Ak

Hu(x)δAku dx

+ 1
2

∫
Ω

[
Huu(x)(δAku)2 + 2Hyu(x)zAkδAku+Hyy(x)(zAk )2]dx+ o(‖δku‖22).

Proof. Given p ∈ (1,∞) we will denote by p∗ its conjugate, i.e. p∗ = p/(p − 1).
Proposition 2.4, with uk in place of u, yields

(2.22) J(uk)− J(u) =

∫
Ω

[
δHk(x) + δHk

y (x)zk1 + 1
2Hyy(x)(zk1 )2

]
dx+ o(‖δku‖22).
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a) We first prove that
(2.23)∫

Ω

[
δHk

y (x)zk1 + 1
2
Hyy(x)(zk1 )2

]
dx =

∫
Ak

[
δHk

y (x)zAk + 1
2
Hyy(x)(zAk )2

]
dx+ o(‖δku‖22).

By (2.20) and (1.2), there exists q1 ∈ (1, 2) such that ‖zBk‖2 = O(‖δBku‖q1).
Thus, by Hölder inequality and the fact that |Bk| → 0, we get

(2.24) ‖zBk‖2 = O(‖δBku‖q1) = o(‖δku‖2).

Henceforth, an easy computation, using the Cauchy-Schwarz inequality and (2.24),
implies that
(2.25)∫

Ω

[
δHk

y (x)zk1 + 1
2
Hyy(x)(zk1 )2

]
dx =

∫
Ω

[
δHk

y (x)zAk + 1
2
Hyy(x)(zAk )2

]
dx+ o(‖δku‖22).

On the other hand, using (2.20) and (1.2), there exists q2 ∈ (2,∞) such that

(2.26) ‖zAk‖q2 = O(‖δAku‖2).

Since q∗2 ∈ (1, 2), as in estimate (2.24) we get ‖δBku‖q∗2 = o(‖δku‖2). Therefore,
(2.26) yields

(2.27)

∫
Bk

|zAk ||δku|dx ≤ ‖zAk‖q2‖δBku‖q∗2 = o(‖δku‖22),

showing that
∫
Bk
δHk

y (x)zAkdx = o(‖δku‖22). Moreover, using (2.26) and Hölder

inequality we obtain∫
Bk

|zAk |2dx ≤ |Bk|
1

(q2/2)
∗

(∫
Bk

|zAk |q2dx

) 2
q2

= o
(
‖δku‖22

)
,

which, together with (2.25), implies expression (2.23).

b) We now prove that

(2.28)

∫
Ak

δHk
y (x)zAkdx =

∫
Ak

Hyu(x)zAkδAku dx+ o(‖δku‖22).

By a Taylor expansion, we have:

(2.29)

∫
Ak

δHk
y (x)zAkdx =

∫
Ak

Hyu(x)zAkδAku dx+O

(∫
Ak

|zAk ||δku|2dx

)
.

Hölder inequality, estimates (2.26) and ‖δku‖q∗2 = O(‖δku‖2) and the fact that
‖δAku‖∞ → 0, give
(2.30)∫

Ak

|zAk ||δku|
2dx ≤ ‖zAk‖q2

(∫
Ak

|δku|2q
∗
2 dx

) 1
q∗2

= O(‖δAku‖∞‖δku‖
2
2) = o(‖δku‖22),

from which (2.28) follows.

c) Finally, a Taylor expansion and the fact that ‖δAku‖∞ → 0 imply that

(2.31)

∫
Ak

δHk(x)dx =

∫
Ak

[
Hu(x)δAku+ 1

2Huu(x)(δAku)2
]

dx+ o(‖δku‖22).

The conclusion follows from (2.22) and expressions (2.23), (2.28) and (2.31). �

The following corollary is a straightforward consequence of Theorem 2.5.
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Corollary 2.6. Under the assumptions of Theorem 2.5 we have that

(2.32) J(uk)− J(u) = J(uBk)− J(u) + J(uAk)− J(u) + o(‖δku‖22).

We now set some useful notation. Let us first define the linear map Q1[u] :
L2(Ω)→ R as

(2.33) Q1[u]v :=

∫
Ω

Hu(x)v(x)dx.

Secondly, we define the quadratic form Q2[u] : L2(Ω)→ R as

(2.34) Q2[u](v) =

∫
Ω

[
Hyy(x)(ζ[v])2 + 2Hyu(x)ζ[v]v +Huu(x)v2

]
dx,

where ζ[v] is defined as the unique solution in H2(Ω)∩H1
0 (Ω) of the linearized state

equation

(2.35)

{
−∆ζ + ϕy(x)ζ + ϕu(x)v = 0, in Ω,

ζ = 0, on ∂Ω.

It is easy to check, using Theorem 1.1, that ζ[v] satisfies the same estimates as z1[v]
in Lemma 2.1. Therefore, we have that Q2[u](v) = O(‖v‖22), and thus Q2[u] is a

continuous quadratic form on L2(Ω). For future reference, we denote by Q̂2[u] :
L2(Ω)× L2(Ω)→ R for the associated continuous symmetric bilinear form, i.e.

(2.36) Q̂2[u](v1, v2) := 1
2 [Q2[u](v1 + v2)−Q2[u](v1)−Q2[u](v2)] .

Using the previous definitions we have the following result:

Theorem 2.7. Under the assumptions of Theorem 2.5 we have:

(2.37) J(uk)− J(u) =

∫
Bk

δHk(x)dx+Q1[u]δAku+ 1
2Q2[u](δAku) + o(‖δku‖22).

Proof. Let ζk be the solution of (2.35) with δAku in place of v. By a Taylor
expansion, the function wk := zAk − ζk satisfies on Ω:

−∆wk + ϕy(x)wk = O(|δAku|2),

with Dirichlet boundary condition. Hence, we have

‖wk‖2 = O(‖δAku‖2‖δAku‖∞) = o(‖δAku‖2).

Using this estimate it is straightforward to prove that we can replace zAk by ζk in
(2.21) up to an error o(‖δAku‖22), from which the result follows. �

3. Optimality conditions

The purpose in this section is to provide some new results concerning optimality
conditions for (CP). More precisely, we first provide a general first order result that
yields to the well-known Pontryagin’s minimum principle for L1-weak local solu-
tions. Moreover, it also implies that weak local solutions satisfy a local Pontryagin’s
minimum principle. Next, we study second order conditions and we extend to the
strong sense two second order sufficient conditions for local quadratic growth (see
[18, 3]). Finally, we characterize local quadratic growth in the strong sense.
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3.1. Pontryagin’s minimum principle for semi-linear elliptic equations.
While Pontryagin’s minimum principle for semi-linear elliptic equations is well-
known for Ls-weak local solutions (s ∈ [1,∞)), we will obtain it as a particular
case of a more general statement (see Proposition 3.5); the latter will allow us to
obtain a version of Pontryagin’s minimum principle for weak local solutions. Let
us set

(3.1) K(x) := [a(x), b(x)] for any x ∈ Ω.

Definition 3.1. We say that the set-valued map U : Ω → 2R (denoted by U :
Ω ⇒ R) is a measurable multifunction if, for any closed set C ⊂ R, we have that
U−1(C) is measurable. We say that it is feasible if U(x) ⊆ K(x) for a.a. x ∈ Ω,
and closed-valued if U(x) is closed for a.a. x ∈ Ω. If u : Ω → R is a measurable
function, with u(x) ∈ U(x) for a.a. x ∈ Ω, we say that u is a measurable selection
of U . We denote by select(U) the set of measurable selections.

Example 3.2. Given u ∈ K, consider the two following examples:

(i) For ε > 0, set Uε(x) = [a(x), b(x)] ∩ [u(x) − ε, u(x) + ε] for a.a. x ∈ Ω. We
can interpret a weak solution as a solution of the problem obtained by adding the
constraint u(x) ∈ Uε(x) a.e., for ε > 0 small enough.

(ii) For x ∈ Ω and ε > 0, let B(x, ε) the closed ball in Rn of center x and radius ε.
The following measurable multifunction will be used in the proof of theorem 3.6:

(3.2) Ux,ε(x) :=

{
K(x) if x ∈ B(x, ε) ∩ Ω,
{u(x)} if x ∈ Ω \B(x, ε).

Definition 3.3. Let U : Ω ⇒ R be a feasible, closed valued measurable multifunc-
tion. We say that u ∈ K is a Pontryagin extremal in integral form with respect to
U if
(3.3)∫

Ω

H(x, y(x), p(x), u(x))dx ≤
∫

Ω

H(x, y(x), p(x), v(x))dx, for all v ∈ select(U),

and that it is a Pontryagin extremal with respect to U if for a.a. x ∈ Ω we have

(3.4) H(x, y(x), p(x), u(x)) ≤ H(x, y(x), p(x), v) for all v ∈ U(x).

If U(x) = K(x) for a.a. x ∈ Ω, a Pontryagin extremal with respect to U will
be simply called Pontryagin extremal. By analogy with weak solutions, if u is a
Pontryagin extremal with respect to Uε (defined in Example 3.2(i)) for some ε > 0,
we say that u is a weak Pontryagin extremal.

Obviously, a Pontryagin extremal is a Pontryagin extremal in integral form.
Setting F (x, u) := H(x, y(x), p(x), u) in the proposition below, whose proof can be
found in [30, Theorem 3A], we have that the converse is also true.

Proposition 3.4. Let U : Ω ⇒ R be a feasible, closed valued measurable multi-
function, u ∈ select(U), and F : Ω̄× R→ R be a continuous function, such that u
is solution of the problem

(3.5) Min
u

∫
Ω

F (x, u(x))dx u ∈ select(U).

Then, for a.a. x ∈ Ω,

(3.6) F (x, u(x)) ≤ F (x, v), for all v ∈ U(x).
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As a consequence we have:

Proposition 3.5. Let U : Ω ⇒ R be a feasible, closed valued measurable multi-
function. Suppose that u ∈ K satisfies

(3.7) J(u) ≤ J(u), for all u ∈ select(U).

Then u is a Pontryagin extremal with respect to U .

Proof. In view of Proposition 3.4 it is enough to show that u is a Pontryagin
extremal in integral form with respect to U . Set F (x, u) := H(x, y(x), p(x), u) and
F(u) :=

∫
Ω
F (x, u(x))dx. By contradiction, suppose that there exists v ∈ select(U)

such that (v) < (u). Consequently, for some ε > 0, there exists a measurable subset
Ωε of Ω such that

(3.8) H(x, y(x), p(x), v(x)) + ε ≤ H(x, y(x), p(x), u(x)), for a.a. x ∈ Ωε.

Let Ωk be a sequence of measurable subsets of Ωε such that |Ωk| = 1/k and define
vk : Ω→ R as

(3.9) vk(x) = v(x) if x ∈ Ωk, vk(x) = u(x) otherwise.

Then vk ∈ select(U) and ‖vk − u‖1 = O(1/k). Thus, ‖vk − u‖1‖vk − u‖s = o(1/k)
for s > n/2. Therefore, expression (2.9) in Lemma 2.2, inequality (3.8) and the
optimality condition (3.7) imply

0 ≤ J(vk)− J(ū) ≤ −ε/k + o(1/k) as k ↑ ∞,
which gives the desired contradiction. �

As a corollary we obtain the well known Pontryagin’s minimum principle for
semi-linear elliptic problems, e.g. [4, 6, 7, 29], as well as a version for weak local
solutions.

Theorem 3.6. Let u be a L1-weak (respectively weak) local solution of (CP). Then
u is a Pontryagin extremal (respectively weak Pontryagin extremal).

Proof. The result is a straightforward consequence of Proposition 3.5 applied to the
multifunctions of example 3.2, in case (i) (respectively (ii)) for dealing with weak
(respectively. L1-weak) extremals. �

Definition 3.7. Let u be a Pontryagin extremal with respect to the feasible, closed
valued measurable multifunction U . We can change U and u over a negligible set,
so that U(x) is compact for all x, and u(x) minimizes the Hamiltonian for all x ∈ Ω.
In that case we say that u is a Pontryagin representative (of the equivalence class of
functions a.e. equal to u). Note that a Pontryagin representative is also defined on
∂Ω. In the sequel we will identify Pontryagin extremals with one of their Pontryagin
representatives.

Corollary 3.8. Let u be a weak local solution of (CP). Let x ∈ Ω be such that
a(x) < b(x). Then

(3.10)
Hu(x) ≥ 0 if u(x) = a(x), Hu(x) ≤ 0 if u(x) = b(x),

and Hu(x) = 0 otherwise.

Moreover, we have that

(3.11) Huu(x) ≥ 0 if Hu(x) = 0.
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Proof. This is a straightforward consequence of Theorem 3.6. �

Definition 3.9. Let u be a Pontryagin extremal. We say that the strict Pontryagin
inequality holds at u ∈ K if for all x ∈ Ω,
(3.12)
H(x, y(x), p(x), u(x)) < H(x, y(x), p(x), v), when v 6= u(x), for all v ∈ K(x).

Lemma 3.10. A Pontryagin extremal that satisfies the strict Pontryagin inequality
belongs to C(Ω).

Proof. Let u satisfy the hypothesis of the lemma, and let xk → x̄ in Ω. Denote by

ûk := max(a(xk),min(ū(x̄), b(xk))),

the projection of ū(x̄) onto [a(xk), b(xk)]. Since a and b are continuous, ûk → ū(x̄).
Extracting if necessary a subsequence, we may assume that u(xk)→ ũ ∈ K(x̄), and
so
(3.13)

H(x̄, y(x̄), p(x̄), ũ) = limkH(xk, y(xk), p(xk), u(xk))
≤ limkH(xk, y(xk), p(xk), ûk) = H(x̄, y(x̄), p(x̄), u(x̄)).

By (3.12), ũ = u(x̄). The conclusion follows. �

3.2. Second order necessary conditions. Now, we establish second order neces-
sary conditions. The novelty in this subsection is a second order necessary condition
for local quadratic growth in L1-sense (so in particular in the strong sense). Let us
start with some standard definitions and results.

Consider a Banach space (X, ‖ · ‖X) and a non-empty closed convex set K ⊆ X.
For x, x′ ∈ X define the segment [x, x′] := {x+ λ(x′ − x) | λ ∈ [0, 1]} and for A ⊆
X set cloX(A) for its closure. In order to simplify the notation, when X = Lp(Ω)
for some p ∈ [1,∞] we will write clop(A) := cloLp(Ω)(A) for A ⊆ L∞(Ω). The
radial, the tangent and the normal cone to K at x̄ are defined respectively by
(3.14)
RK(x̄) := {h ∈ X | ∃ σ > 0 such that [x̄, x̄+ σh] ⊆ K},
TK(x̄) := {h ∈ X | ∃ x(σ) = x̄+ σh+ o(σ) ∈ K, σ > 0, ||o(σ)/σ||X → 0, as σ ↓ 0},
NK(x̄) := {x∗ ∈ X∗ | 〈x∗, x− x̄〉X∗,X ≤ 0, for all x ∈ K} ,

where X∗ is the dual topological space of X and 〈·, ·〉X∗,X is the duality product.
Recall that, since K is a closed convex set, we have TK(x̄) = cloX(RK(x̄)) and
NK(x̄) is the polar cone of TK(x̄), i.e.,

(3.15) NK(x̄) = {x∗ ∈ X∗ | 〈x∗, h〉X∗,X ≤ 0, for all h ∈ TK(x̄)} .

In what follows we will consider the set K, defined in (1.8), as a subset of L2(Ω)
rather than a subset of L∞(Ω). This will allow us to give explicit expressions for
the tangent and normal cone. Note that, since a, b ∈ L∞(Ω), for all u ∈ K we
have that RK(u) is a subset of L∞(Ω). The next lemma is standard (at least when
min(b − a) > 0) and gives the relation between the tangent cone TK(u) (normal
cone NK(u)) and the pointwise tangent cone TK(x)(u(x)) (pointwise normal cone
NK(x)(u(x))) for x ∈ Ω. The proof of the lemma can be found in the appendix for
the sake of completeness of the paper.

Lemma 3.11. Let K be defined by (1.8) and u ∈ K. Then the following assertions
hold true:
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(i) The tangent cone to K at u is given by
(3.16)
TK(u) =

{
v ∈ L2(Ω) | v(x) ∈ TK(x)(u(x)) for a.a. x ∈ Ω

}
,

=
{
v ∈ L2(Ω) | v(x) ≥ 0 if u(x) = a(x), v(x) ≤ 0 if u(x) = b(x)
a.e. in Ω} .

(ii) The normal cone to K at u is given by

(3.17) NK(u) =
{
v ∈ L2(Ω) | v(x) ∈ NK(x)(u(x)) for a.a. x ∈ Ω

}
.

(iii) For every q∗ ∈ NK(u) we have that

(3.18) TK(u) ∩ (q∗)⊥ = {v ∈ TK(u) | v(x)q∗(x) = 0 for a.a. x ∈ Ω} ,

where (q∗)⊥ is the subspace of L2(Ω) consisting of the orthogonal vectors to q∗.

The following classical technical notion is essential in the study of second order
necessary conditions in abstract optimization theory, see e.g. [23, 26, 10].

Definition 3.12. The set K is said to be polyhedric at u ∈ K if for every q∗ ∈
NK(u) we have that

(3.19) clo2

(
RK(u) ∩ (q∗)⊥

)
= TK(u) ∩ (q∗)⊥.

The following lemma is a particular instance of the more general result [10, The-
orem 3.58] which holds true in general Banach lattices. For the reader’s convenience
we provide the simple proof for our case.

Lemma 3.13. The set K is polyhedric at u.

Proof. The inclusion clo2(RK(u) ∩ (q∗)⊥) ⊆ TK(u) ∩ (q∗)⊥ being trivial, we prove
the other one. Now, fix q∗ ∈ NK(u) and let v ∈ TK(u) ∩ (q∗)⊥. For ε > 0 define

(3.20) v̂ε(x) :=

{
v(x) if u(x) + εv(x) ∈ K(x),
0 otherwise.

Clearly, v̂ε ∈ RK(u) ∩ (q∗)⊥ and, as ε ↓ 0, we have v̂ε(x) → v(x) for a.a. x ∈ Ω.
The Dominated Convergence Theorem gives that v̂ε → v in L2(Ω) and the result
follows. �

We now introduce the set of directions that, while being tangent to the feasible
set, do not increase the cost function up to the first order. The critical cone to K
at a local Pontryagin extremal u is defined as

(3.21) CK(u) := TK(u) ∩ (Q1[u])⊥,

while the pointwise critical cone is defined by

(3.22) Cx :=
{
v ∈ TK(x)(u(x)) | Hu(x)v = 0

}
for a.a. x ∈ Ω.

Since u is a local Pontryagin extremal u, we have that −Q1[u] ∈ NK(u). Thus,
Lemma 3.11(iii) implies that

(3.23) CK(u) =
{
v ∈ L2(Ω) | v(x) ∈ Cx for a.a. x ∈ Ω

}
.

We have the following second order necessary condition (see e.g. [3, 14, 15] for more
general settings).
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Theorem 3.14. Let u be a weak local solution of (CP). Then, recalling (2.34), we
have

(3.24) Q2[u](v) ≥ 0 for all v ∈ CK(u),

Proof. Let v ∈ RK(u) ∩ (Q1[u])⊥ and set uk := u+ 1
kv ∈ K, for k large. The local

optimality of u and Theorem 2.7 with Ak ≡ Ω, imply that

0 ≤ J(uk)− J(u) =
1

k2
Q2[u](v) + o

(
1/k2

)
.

Multiplying by k2 and letting k ↑ ∞ yields (3.24) for all v ∈ RK(u) ∩ (Q1[u])⊥.
Using that Q1[u] ∈ NK(u), relation (3.24) follows from the continuity of Q2 in
L2(Ω) and the first equality in Lemma 3.11(iii). �

Now we begin the study of necessary conditions for local quadratic growth on
K.

Definition 3.15. For u ∈ K, we say that

(i) The Hamiltonian satisfies the a.e. local quadratic growth property at u if and
only if there exist α, ε > 0 such that a.e. in Ω we have
(3.25)

H(x, y(x), p(x), u(x))+α|v−u(x)|2 ≤ H(x, y(x), p(x), v) ∀v ∈ K(x) with |v−u(x)| ≤ ε.

(ii) The Hamiltonian satisfies the global quadratic growth property at Pontryagin
representative of u if and only if there exists α > 0 such that for all x ∈ Ω we have

(3.26) H(x, y(x), p(x), u(x))+α|v−u(x)|2 ≤ H(x, y(x), p(x), v) for all v ∈ K(x).

Adapting the techniques of [9] to our framework we can characterize the global
quadratic growth for the Hamiltonian.

Lemma 3.16. Let u ∈ K. Then u is a Pontryagin extremal that satisfies the
global quadratic growth property for the Hamiltonian iff both the strict Pontryagin
inequality (3.12) and the a.e. local quadratic growth property for the Hamiltonian
hold.

Proof. It is enough to show that if (3.12) holds everywhere and (3.25) holds a.e.
then (3.26) holds everywhere. First note that by Lemma 3.10 we have that u is
continuous. It follows that (3.25) holds everywhere. Now, let

β := min
x,v

{
H(x, y(x), p(x), v)−H(x, y(x), p(x), u(x)) | x ∈ Ω, v ∈ K(x), |v − u(x)| ≥ ε

}
.

By (3.12) and since u is continuous, we get that β > 0. For v ∈ K(x) with
|v − u(x)| ≥ ε, we have

H(x, y(x), p(x), v)−H(x, y(x), p(x), u(x)) ≥ β ≥ β

4M2
|v − u(x)|2,

where we recall that M = max{‖a‖∞, ‖b‖∞}. Hence, by (3.25) we get that (3.26)

is satisfied with min
(
α, β

4M2

)
, which concludes the proof. �

We now provide second order necessary conditions for local quadratic growth on
K.
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Theorem 3.17. The following assertions hold true:

(i) If J has local quadratic growth on K at u in the weak sense, then the Hamiltonian
satisfies the a.e. local quadratic growth property, and we have

(3.27) Q2[u](v) ≥ α‖v‖22, for all v ∈ CK(u).

(ii) If J has local quadratic growth on K at u in the L1-weak sense, then the Hamil-
tonian satisfies the global quadratic growth property and (3.27) holds true. In par-
ticular, u is continuous.

Proof. For α > 0, let Jα : L∞(Ω) → R be defined by Jα(u) := J(u) − α‖u − u‖22.
Consider the problem

min Jα(u) subject to u ∈ K. (CPα)

If J has local quadratic growth on K at u in the weak sense, then there exists α > 0,
ε > 0 such that Jα(u) ≥ Jα(u), whenever ‖u − u‖∞ ≤ ε, that is u is a weak local
solution of (CPα). By Theorem 3.14, (3.27) holds, and by Theorem 3.6, u is a local
Pontryagin extremal for (CPα), i.e.,

(3.28) H(x, y(x), p(x), u(x)) ≤ H(x, y(x), p(x), v)− α|v − u|2,

for all v ∈ K(x) with |v− u(x)| ≤ ε. This means that Hamiltonian satisfies the a.e.
local quadratic growth property (3.25). On the other hand, if J has local quadratic
growth on K at u in the L1-weak sense, we have that u is a L1-weak local solution
of (CPα). By Theorem 3.6, u is a Pontryagin extremal for (CPα), i.e. for a.a.
x ∈ Ω, inequality (3.28) holds for all v ∈ K(x). This means that (3.26) holds for
all x ∈ Ω′ ⊂ Ω with mes(Ω \ Ω′) = 0. Let x̄ ∈ Ω, and xk → x̄, xk ∈ Ω′. Extracting
if necessary a subsequence, we may assume that u(xk) → ũ, and so for v ∈ K(x̄),
denoting by vk the projection of v onto [a(xk), b(xk)], we have:

H(x̄, y(x̄), p(x̄), ũ)−H(x̄, y(x̄), p(x̄), v) + α|v − ũ|2 =

lim
k→∞

{H(xk, y(xk), p(xk), u(xk))−H(xk, y(xk), p(xk), vk) + α|vk − u(xk)|2} ≤ 0.

By the definition 3.7, we have that ũ = u(x) and the above inequality yields that
(3.26) holds for all x ∈ Ω. In particular, Lemma 3.10 implies that u is continuous.

�

3.3. Extension of standard second order sufficient conditions. In this sub-
section we extend to the strong sense two well known second order sufficient con-
ditions for the local quadratic growth of J on K in the weak sense. The main tool
for proving such extensions is the decomposition result in Theorem 2.5.

We first consider the case studied in [3] which supposes that Q2[u] is a Legendre
form.

Definition 3.18. Given a Hilbert space X, a quadratic form Q : X → R is said to
be a Legendre form if it is sequentially weakly lower semicontinuous and that if hk
converges weakly to h in X and Q(hk)→ Q(h) then hk converges strongly to h in
X.

For the reader’s convenience, let us reproduce the sufficiency part of [3, Theorem
2.9].
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Theorem 3.19. Suppose that (H1)-(H3) hold true and let u ∈ K. Assume that
Hu(x)v ≥ 0 for all v ∈ TK(x)(u(x)) a.e. in Ω, that Q2[ū] is a Legendre form and
that there exists α > 0 such that the following second order condition holds true:

(3.29) Q2[u](v) ≥ α‖v‖22, for all v ∈ CK(u).

Then J has local quadratic growth on K at u in the weak sense.

We recall that J has local quadratic growth on K at u in the strong sense if there
exists α, ε > 0 such that

(3.30) J(u) ≥ J(u) + α‖u− u‖22 for all u ∈ K with ‖yu − yu‖∞ ≤ ε.

We have the following extension of Theorem 3.19.

Theorem 3.20. Suppose that (H1)-(H3) hold true and let u ∈ K. Assume that
the strict Pontryagin inequality holds at u, that Q2[ū] is a Legendre form and that
there exists α > 0 such that the following second order condition holds true:

(3.31) Q2[u](v) ≥ α‖v‖22, for all v ∈ CK(u).

Then J has local quadratic growth on K at u in the strong sense.

Proof. a) Let assume that (3.30) does not hold. Then, there exists a sequence
uk ∈ K such that ‖yk − ȳ‖∞ → 0 as k ↑ ∞ (we have denoted yk := yuk) and

(3.32) J(uk)− J(u) ≤ o(‖δku‖22),

where δku := uk − u. Theorem 3.19 implies that J has local quadratic growth on
K at u in the weak sense. Therefore, Theorem 3.17(i) yields that the Hamiltonian
satisfies the a.e. local quadratic growth property. Using Lemma 3.16, we obtain
that the Hamiltonian satisfies the global quadratic growth property. Consequently,
by expression (2.8) in Lemma 2.2, inequality (3.32) implies that ‖δku‖2 → 0. Let
us define the measurable sets

(3.33) Ak :=
{
x ∈ Ω | |uk(x)− u(x)| ≤

√
‖uk − u‖1

}
and Bk := Ω\Ak.

Chebyshev’s inequality implies that |Bk| ≤
√
‖uk − u‖1, hence |Bk| goes to zero.

Thus, introducing the notations of subsection 2.3 we clearly have that ‖δAku‖∞ →
0. Therefore, Theorem 2.5 gives

(3.34)

∫
Bk

δHk(x)dx+

∫
Ak

Hu(x)δAku(x)dx+ 1
2Q2[u](δAku) ≤ o(‖δku‖22).

Now, set

(3.35) σAk := ‖δAku‖2, σBk := ‖δBku‖2 and hence ‖δku‖22 = σ2
Ak

+ σ2
Bk
.

If σAk = o(σBk), using that Hu(x)δAku(x) ≥ 0 and that Q2[u](δAku) = O(σ2
Ak

) =

o(σ2
Bk

), inequality (3.34) and (3.26) imply that σ2
Bk
≤ o(σ2

Bk
), which is impossible.

Thus, let us assume, up to a subsequence, that σBk = O(σAk) and define hk :=
δAku/σAk .

By (3.12) the first integral in (3.34) is nonnegative, and therefore, after minoriz-
ing it by 0,

(3.36)

∫
Ak

Hu(x)hk(x)dx+ 1
2σAkQ2[u](hk) ≤ o(σAk).
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It follows that

(3.37)

∫
Ak

Hu(x)hk(x)dx ≤ O(σAk).

Also, minorizing the first integral in (3.36) by 0, we obtain that

(3.38) Q2[u](hk) ≤ o(1),

where we recall that o(1) denotes a sequence αk that tends to zero as k ↑ ∞.

b) Since hk ∈ TK(u) and ‖hk‖2 = 1, up to a subsequence, it converges weakly in
L2(Ω) to some h̄. Recalling that TK(u) is weakly closed we get that h̄ ∈ TK(u).
Noting that Q2[u](δAku)/σk = o(1), condition (3.26) and equation (3.34) imply
that

0 ≤
∫
Ak

Hu(x)hk(x)dx ≤ o(1).

By passing to the limit in the above inequality, we get that h̄ ∈ CK(u). On the other
hand, since equation (3.34) implies that Q2[u](hk) ≤ o(1), the lower semicontinuity
of Q2[u] and its positivity over CK(u) give

0 ≤ Q2[u](h̄) ≤ lim inf
k→∞

Q2[u](hk) ≤ lim sup
k→∞

Q2[u](hk) ≤ 0.

The above inequality and (3.31) imply that h̄ = 0 and that Q2[u](hk)→ Q2[u](h̄).
Thus, since Q2[u] is a Legendre form, we have that hk → 0 strongly in L2(Ω) which
contradicts that ‖hk‖2 = 1. �

Example 3.21. Let us consider a slight variation of the problem treated in [3].
Let f , yd ∈ C(Ω), g ∈ C2(R) with gy ≥ 0 and gyy locally Lipschitz. Consider the
following data for (CP),

(3.39) `(x, y, u) = 1
2 |u|

2 + 1
2 (y − yd(x))2, ϕ(x, y, u) = g(y) + u+ f.

By Remark 1.5, the above problem admits at least one solution. Moreover, it
is easy to see (see e.g. [3, 10]) that for u ∈ K the associated quadratic form
Q2[u] is a Legendre form. Therefore, since the Hamiltonian for this problem is
strictly convex with respect to the control variable, we have that Hu(x)v ≥ 0 for
all v ∈ TK(x)(u(x)) a.e. in Ω together with (3.31) are a sufficient condition for the
local quadratic growth on K in the strong sense. Note that even in this particular
convex case, our sufficient condition for strong optimality is still of interest.

Our aim now is to extend to the strong sense the second order sufficient condition
in [18], which is stated in terms of a larger cone than CK(u) but the assumption for
Q2[u] of being a Legendre form is not needed. For τ > 0 define the strongly active
set

(3.40) Aτ (u) := {x ∈ Ω | |Hu(x)| > τ} ,
and the τ -critical cone

(3.41) CτK(u) := {v ∈ TK(u) | v(x) = 0 for x ∈ Aτ (u)} .
For the reader’s convenience, we reproduce [18, Theorem 2] adapted to our setting.
Let us remark that the result holds true under more general assumptions (more
precisely, measurability conditions over the data, instead of our continuity assump-
tions in (H1)-(H3)). Moreover, the result in [18] is stated for Neumann boundary
controls, but the technique is quite similar for distributed controls and Dirichlet
boundary conditions.
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Theorem 3.22. Suppose that (H1)-(H3) hold true and let u ∈ K. Assume that
Hu(x)v ≥ 0 for all v ∈ TK(x)(u(x)) a.e. in Ω and that there exist τ, α > 0 such that
the following second order condition holds true:

(3.42) Q2[u](v) ≥ α‖v‖22, for all v ∈ CτK(u).

Then J has local quadratic growth on K at u in the weak sense.

We have the following extension of Theorem 3.22 to the strong sense.

Theorem 3.23. Suppose that (H1)-(H3) hold true and let u ∈ K. Assume that
the strict Pontryagin inequality holds at u and that there exist τ, α > 0 such that
the following second order condition holds true:

(3.43) Q2[u](v) ≥ α‖v‖22, for all v ∈ CτK(u).

Then J has local quadratic growth on K at u in the strong sense.

Proof. The beginning of the proof is exactly as in Theorem 3.20. The rest of the
proof is a slight modification of the proof in [33] for the weak case. Thus, by (3.34),
we may assume that the following inequality holds true

(3.44)

∫
Ak

Hu(x)δAku(x)dx+ 1
2Q2[u](δAku) ≤ o(‖δAku‖22).

Define v0
k(x) := 1{Ak\Aτ (u)}(x)δAku(x) (where 1A denotes the indicator function of

A) and v1
k(x) := δAku(x)− v0

k(x). Obviously v0
k ∈ CτK(u). Using (2.36) and (3.43),

we get

(3.45) τ

∫
Ak∩Aτ (u)

|v1
k|dx+ 1

2α‖v
0
k‖22 + 1

2Q2[u](v1
k) + Q̂2[u](v0

k, v
1
k) ≤ o(‖δAku‖22).

There exists c1 > 0 such that Q̂2[u](v0
k, v

1
k) ≥ −c1‖v0

k‖2‖v1
k‖2. With Young’s in-

equality, we get

(3.46) −Q2[u](v0
k, v

1
k) ≤ α

4
‖v0
k‖22 + c2‖v1

k‖22 ≤
α

4
‖v0
k‖22 + c2‖v1

k‖∞‖v1
k‖1,

for some c2 > 0. On the other hand, there exists c3 > 0 such that

(3.47) 1
2Q2[u](v1

k) ≥ −c3‖v1
k‖22 ≥ −c3‖v1

k‖∞‖v1
k‖1.

Recall that ‖δAku‖∞ → 0, so we can choose k large such that ‖v1
k‖∞(c2 +c3) ≤ τ/2.

Therefore, combining inequalities (3.46)-(3.47) with (3.45) we easily get that

min
{τ

2
,
α

4

}
‖δAku‖22 ≤

τ

2

∫
Ak∩Aτ (u)

|v1
k|2dx+

α

4

∫
Ak\Aτ (u)

|v0
k|2dx ≤ o(‖δAku‖22),

which gives the desired contradiction. �

3.4. Characterization of local quadratic growth in the strong sense. We
now state the main result of the article, which characterizes local quadratic growth
in the strong sense. Note that in particular, the sufficient condition does not need
the assumption that Q2[u] is a Legendre form (as in Theorem 3.20) or that it is
uniformly positive on CτK(u) (as in Theorem 3.23).
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Theorem 3.24. Suppose that (H1)-(H3) hold true and let u ∈ K. Then J has
local quadratic growth on K at u in the strong sense if and only if the the Hamilton-
ian satisfies the global quadratic growth property at u and there exists α > 0 such
that the following second order condition holds true:

(3.48) Q2[u](v) ≥ α‖v‖22, for all v ∈ CK(u).

The proof needs some preparation. Again, the main ingredient of the proof
is the decomposition result in Theorem 2.5. However, the choice of the sets Ak
and Bk is slightly different from the one used in the preceding results. It takes
into account the degeneracy of the so-called Hoffman constants associated with the
pointwise critical cone Cx, defined in (3.22). By Hoffman’s Lemma [24] for each
x ∈ Ω there exists a smallest possible (finite) nonnegative number κx, called the
Hoffman constant, such that

(3.49) dist(v, Cx) ≤ κx
[
|Hu(x)v|+ 1{u(x)=a(x)}(−v)+ + 1{u(x)=b(x)}v+

]
,

where for x ∈ R we set (x)+ := max{x, 0}. Since these Hoffman constants play an
important role in the analysis, we compute them. It is easily checked that

(3.50)

{
Cx = TK(x), κx = 1 if Hu(x) = 0,
Cx = {0}, κx ≤ max

(
1, |Hu(x)|−1

)
otherwise.

Proof of Theorem 3.24. Since by Theorem 3.17(ii) the condition is necessary, we
only need to prove that is also sufficient. In order to do this, we proceed as follows:
a) We first essentially repeat step (a) of the proof of Theorem 3.20, with a slightly
different choice of the sets Ak and Bk. If the conclusion does not hold, let uk ∈ K
be such that ‖yk − ȳ‖∞ → 0 and (3.32) holds. Setting δku := uk − u we have that
‖δku‖2 → 0. Remind that κx denotes the Hoffman constants of the pointwise cones
Cx. For some sequence εk ↓ 0 to be specified later, consider the measurable sets
(3.51)

B1
k :=

{
x ∈ Ω : |uk(x)− u(x)| ≥

√
‖δku‖2

}
, B2

k := {x ∈ Ω : κx ≥ 1/εk} ,
Bk := B1

k ∪B2
k,

and Ak := Ω\Bk. Since |Bik| → 0 for i = 1, 2, we have that |Bk| → 0, and therefore,
(3.34) holds. Fix σAk and σBk as in (3.35) and define hk := δAku/σAk . If (for a
subsequence) σAk = o(σBk), we obtain a contradiction in the same way. So we may
assume that σBk = O(σAk), and we obtain that (3.37)-(3.38) hold.
b) We make the decomposition

(3.52) hk = ĥk + h̃k, where ĥk(x) := PCx(hk(x)), for a.a. x ∈ Ω,

where PCx(·) denotes the projection on Cx. Since the multifunction x ∈ Ω→ Cx is

convex and measurable, classical results (see e.g. [30]) imply that ĥk is measurable.
By the definition of Ak, and since uk is feasible, we have that the contribution of
the control constraints to the estimate of the distance to Cx in (3.49) is zero, and
Hu(x)hk(x) ≥ 0, proving that

(3.53) |h̃k(x)| = dist(hk(x), Cx) ≤ 1

εk
Hu(x)hk(x).

With (3.37) we deduce that

(3.54) ‖h̃k‖1 = O

(
σAk
εk

)
.
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Since a projection is non expansive, we also have |h̃k(x)| ≤ |hk(x)| for a.a. x ∈ Ω.
Therefore

(3.55) σAk‖h̃k‖∞ ≤ σAk‖hk‖∞ = ‖δAku‖∞.

We let εk := ‖δku‖1/42 , that converges to 0 as required. Using that ‖δAku‖∞ ≤√
‖δku‖2, we get

(3.56) ‖h̃k‖22 ≤ ‖h̃k‖∞‖h̃k‖1 = O

(
‖δAku‖∞
σAk

σAk
εk

)
= O(εk).

By (3.52) and (3.56) we obtain that ‖hk− ĥk‖2 → 0 and so ‖ĥk‖2 → 1. Combining

with (3.38) and using (3.48) we deduce that α‖ĥk‖2 ≤ Q2[u](ĥk)2 ≤ o(1), which is
impossible. �

Remark 3.25. (i) If min(b − a) > 0, an extension of the analysis in [9] to our
framework (based on similar arguments), gives that (3.48) implies the a.e. local
quadratic growth for the Hamiltonian. Thus, by lemma 3.16, we have that the
strict Pontryagin inequality at u together with (3.48) imply the global quadratic
growth for the Hamiltonian.

(ii) Our analysis excludes the case when the Hamiltonian can have multiple minima,
which happens when the optimal control is discontinuous. However, we note that,
even in the ODE setting, the second order analysis in this case is quite involved
[27], and extending this analysis to the elliptic setting seems to be rather difficult.

4. Appendix

In this section we prove the technical lemmas in section 2.

Proof of Lemma 2.1. For convenience, we will omit the dependence of x in some
parts of the proof. The equation satisfied by δy, with Dirichlet boundary condition,
can be written as

−∆δy(x) + ϕ(x, yu, u)− ϕ(x, y, u) + δϕ(x) = 0, for x ∈ Ω.

Equivalently,

−∆δy +

[∫ 1

0

ϕy(x, y + θδy, u)dθ

]
δy = O(|δu|), for x ∈ Ω.

Thus, the estimates for δy, as well as those for z1, follow directly from Theorem
1.1. The equation satisfied by d1, with Dirichlet boundary condition, becomes:

(4.1) −∆d1 + ϕy(x)d1 + ϕ(x, yu, u)− ϕ(x, y, u)− ϕy(x)δy = 0.

Introducing ϕy(x, y, u) in ϕ(x, y, u)− ϕ(x, y, u)− ϕy(x)δy, easily yields

ϕ(x, y, u)− ϕ(x, y, u)− ϕy(x)δy = O
(
|δy|2 + |δyδu|

)
,

hence the equation satisfied by d1 rewrites:

−∆d1 + ϕy(x)d1 = O
(
|δy|2 + |δyδu|

)
.

Theorem 1.1 implies that for s ∈ (n/2,∞)

‖d1‖1 ≤ O(‖(δy)2‖1 + ‖δyδu‖1)
= O(‖δy‖1‖δy‖∞ + ‖δy‖∞‖δu‖1)
= O(‖δu‖1‖δu‖s).
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Finally, taking s = 2 in Theorem 1.1 gives

‖d1‖2 = O(‖δyδu‖2 + ‖(δy)2‖2) = O(‖δy‖∞‖δu‖2).

�

Proof of Lemma 2.3. Since d2 = d1 − z2, combining (4.1) with (2.11) yields

−∆d2 +ϕy(x)d2 +ϕ(x, y, u)−ϕ(x, y, u)−ϕy(x, y, u)δy+δϕy(x)(δy−z1)− 1

2
ϕyy(x)z2

1 = 0.

Now, by a Taylor expansion, we have:

ϕ(x, y, u)− ϕ(x, y, u)− ϕy(x, y, u)δy =
1

2
ϕyy(x, y, u)(δy)2 +O(|δy|3),

and as ϕy is locally Lipschitz, δϕy(δy−z1) = O(|δu‖δy−z1|) = O(|δu||d1|). There-
fore,

−∆d2 + ϕy(x)d2 +
1

2
ϕyy(x, y, u)(δy)2 − 1

2
ϕyy(x)z2

1 = O(|δy|3 + |δu||d1|).

Now, we have ϕyy(x, y, u)(δy)2 = ϕyy(x)(δy)2 +O(|δu||δy|2). Therefore, we obtain:

−∆d2 + ϕy(x)d2 +
1

2
ϕyy(x)

[
(δy)2 − z2

1

]
= O(|δy|3 + |δu||d1|+ |δu|δy2).

As d1 = δy − z1, we get:

−∆d2 + ϕy(x)d2 = O(|δy|3 + |δu||d1|+ |δu||δy|2 + |d1‖δy + z1|).
From the Theorem 1.1 we get the inequality:

‖d2‖1 = O(‖(δy)3‖1 + ‖δud1‖1 + ‖δu(δy)2‖1 + ‖d1δy‖1 + ‖d1z1‖1).

Using the previous estimates, we easily obtain the result. �

Proof of Lemma 3.11 (i). Set

T̂ (u) :=
{
v ∈ L2(Ω) | v(x) ∈ TK(x)(u(x)) for a.a. x ∈ Ω

}
,

and let v ∈ TK(u). By definition, there exists r : R → L2(Ω), with ‖r(σ)‖2/σ → 0
as σ ↓ 0, such that for small σ

(4.2) u(x) + σv(x) + r(σ)(x) ∈ K(x), for a.a. x ∈ Ω.

Since, up to subsequence, |r(σ)(x)|/σ → 0 for a.a. x ∈ Ω, relation (4.2) implies

that v ∈ T̂ (u). Conversely, let v ∈ T̂ (u) and for ε > 0 set

(4.3) vε := ε−1 [PK(u+ εv)− u] ,

where PK(·) denotes the orthogonal projection in L2(Ω) onto K. Clearly, vε ∈
RK(u) and classical results (see e.g. [30]) yield that vε is measurable and given by

(4.4) vε(x) := ε−1
[
PK(x)(u(x) + εv(x))− u(x)

]
for a.a. x ∈ Ω.

Clearly, vε(x) ∈ RK(x)(u(x)) and using that v(x) ∈ TK(x)(u(x)) we get vε(x)→ v(x)
for a.a. x ∈ Ω. Finally, using that |vε(x)| ≤ |v(x)|, we obtain the convergence in
L2(Ω) and so v ∈ TK(u).

Proof of (ii): Set N̂(u) :=
{
v ∈ L2(Ω) | v(x) ∈ NK(x)(u(x)) for a.a. x ∈ Ω

}
and let

v∗ ∈ N̂(u). Using that NK(x)(u(x)) is the polar cone of TK(x)(u(x)), assertion (i)
yields v∗ ∈ NK(u). Conversely, let v∗ ∈ NK(u) and let v1, v2 be such that

v∗(x) = v1(x) + v2(x), v1(x)v2(x) = 0, v1(x) ∈ TK(x)(u(x)), v2(x) ∈ NK(x)(u(x)),
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for a.a. x ∈ Ω. Assertion (i) implies that v1 ∈ TK(u) and so

‖v1‖22 =

∫
Ω

v∗(x)v1(x)dx ≤ 0,

which gives that v∗ = v2. �
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semilinéaires elliptiques, Journal of Differential Equations 90 (1991), 288–303.
7. , Maximum principles in the optimal control of semilinear elliptic systems, 5th IFAC

Conference on Distributed Parameter Systems, A. El Jai ed. (Perpignan), Pergamon Press

33-1 (26-29 June 1989), 274–298.
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