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Abstract 

 

Ferromagnetic Shape Memory Alloys (FSMA) are promising candidates for sensors and 

actuators for their high-frequency response and large reversible strain. The aim of this 

dissertation is the analysis of the magneto-mechanical behaviors of FSMA. In this regard, we 

study, both experimentally and theoretically, the martensite reorientation in FSMA. Firstly, a 

2D/3D magneto-mechanical energy analysis is proposed and incorporated into phase 

diagrams for a graphic study of path-dependent martensite reorientation in FSMA under 3D 

loadings. Criteria and material requirements for obtaining reversible strain in cyclic loadings 

are derived. The energy analysis predicts that FSMA in 2D/3D configurations (multi-axial 

stresses) has much more advantages than that in 1D configuration, e.g., higher output stress 

and more application flexibility. Secondly, to validate the predictions of the energy analysis, 

2D experiments are performed on FSMA and results reveal that the intrinsic dissipation and 

the transformation strain due to martensite reorientation are constant in all tested 2D stress 

states. Moreover, preliminary results validate that the output stress of FSMA in 2D 

configuration (magnetic field with biaxial stresses) is larger than that in 1D configuration, and 

the output stress can be increased by increasing the auxiliary stress. Finally, to predict the 

magneto-mechanical behaviors of FSMA in general multi-axial loadings, a 3D constitutive 

model is developed within the framework of thermodynamics of irreversible processes. All 

the martensite variants are considered and the temperature effect is also taken into account. 

Model simulations agree well with all the existing 1D/2D experiments. The model is further 

incorporated into finite element analysis for studying the non-linear bending behaviors of 

FSMA beams. The sample-geometry effect and the material anisotropic effect are 

systematically investigated.  

 

 

Keywords: Ferromagnetic shape memory alloys; Martensite reorientation; Magneto-

mechanical energy analysis; Phase diagram; Multi-axial experiments; Thermo-magneto-

mechanical behaviors; Three-dimensional thermodynamics model; Finite element analysis. 
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This opening chapter presents the overview of the ferromagnetic shape memory alloys, and the 

research interest and outline of this dissertation.  
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1.1. Overview of ferromagnetic shape memory alloys  

1.1.1. Background 

Ferromagnetic Shape Memory Alloys (FSMA) appeared as a new kind of smart (active) 

materials when a strain of 0.2% was first observed in Ni2MnGa single crystals under a 

moderate magnetic field (< 1 T) in 1996 (Ullakko et al., 1996). The observed Magnetic-Field-

Induced Strain (MFIS) has the same order of magnitude as the highest magnetostriction 

obtained in giant magnetostrictive materials such as Tb0.27Dy0.73 and Terfenol-D (Ullakko et 

al., 1996). Later on, MFIS of FSMA has been increased to 6% ~ 10% in off-stoichiometric 

single crystalline Ni-Mn-Ga alloys (Heczko et al., 2000; Murray et al., 2000; Sozinov et al., 

2002; Tickle and James, 1999). The large strain in FSMA is due to the martensite 

reorientation (switching among different martensite variants) driven by magnetic fields 

(Chopra et al., 2000; Likhachev and Ullakko, 2000; Ullakko et al., 1996). Therefore, in 

contrast to the conventional (traditional) temperature-driven shape memory alloys, FSMA can 

work in a large bandwidth up to 1~2 kHz (Henry et al., 2002; Marioni et al., 2003; 

Techapiesancharoenkij et al., 2009). The large reversible strain and the high-frequency 

response are the main advantages of FSMA, while its main limitations are brittleness (most 

materials are single crystals), and small working stress (usually smaller than 3 MPa, over this 

stress level the MFIS will be prohibited (Ganor et al., 2008; Gans et al., 2004; Heczko et al., 

2000; Karaca et al., 2006; Kiefer and Lagoudas, 2005; Morito et al., 2007; Murray et al., 

2000)). Improving the working stress is one of our objectives in this thesis. Details will be 

provided in the following chapters. 

The most studied FSMA is Ni-Mn-Ga alloys. Webster et al. (1984) first studied the 

martensitic transformations in polycrystalline Ni2MnGa alloy. Zasimchuk et al. (1990) and 

Martynov and Kokorin (1992) systematically investigated the crystal structure of the 

martensitic phases in Ni2MnGa. Ullakko et al. (1996) first reported a strain of nearly 0.2% in 
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Ni2MnGa single crystal under magnetic field and aroused a worldwide research interest in 

FSMA. Besides the Ni-Mn-Ga alloys, other important types of FSMA include Ni-Fe-Ga 

based alloys (e.g., Hamilton et al., 2006; Li et al., 2003; Oikawa et al., 2002; Sutou et al., 

2004b), Fe-based alloys such as Fe-Pd (e.g., Cui et al., 2004; James and Wuttig, 1998; Liang 

et al., 2003; Wada et al., 2003; Yamamoto et al., 2004) and Fe-Pt (e.g., Kakeshita et al., 2000; 

Sakamoto et al., 2003), and Co-based alloys such as Co-Ni-Al (e.g., Karaca et al., 2003; 

Morito et al., 2002, 2010; Oikawa et al., 2001) and Co-Ni-Ga (e.g., Morito et al., 2009; 

Wuttig et al., 2001). These alloys usually have smaller magnetic-field-induced strains than Ni-

Mn-Ga, but they may have other advantages, e.g., Fe-Pd alloys are more ductile than Ni-Mn-

Ga; Co-Ni-Al alloys contain no expensive elements (Morito et al., 2010).   

 

1.1.2. Martensite reorientation 

Depending on the temperature and the material compositon, the Ni-Mn-Ga single crystals 

have three different martensitic phases: i.e., tetragonal five-layered modulated martensite 

(5M), orthorhombic seven-layered modulated martensite (7M) and tetragonal non-modulated 

martensite (NMT) (Martynov and Kokorin, 1992). Magnetic-field-induced strain has been 

observed in both 5M and 7M martensites, and 5M martensite is the most studied martensitic 

phase in literature. For cubic to tetragonal (5M) martensitic transformation in Ni-Mn-Ga, 

there are three martensite variants (Tickle et al., 1999; Webster et al., 1984; Zasimchuk et al., 

1990): V1, V2 and V3 with their short axes (c-axis) respectively parallel to the x-, y- and z-

coordinate of the parent austenite lattice (see Fig. 1). Which variant is energetically preferred 

depends on the external loadings — mechanical stresses and magnetic fields: e.g., V1 is 

preferred by compression and magnetic field along x-coordinate (see a summary in Fig. 1 for 

other variants). So the magneto-mechanical loadings can induce the switching among variants 

(i.e., martensite reorientation).  
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Fig. 1. Schematic diagram of the austenite and the martensite variants of ferromagnetic shape memory 

alloys. a0 denotes the length of the austenite lattice; a and c respectively denote the lengths of the long 

(a-axis) and short (c-axis) axes of the martensite lattice (the difference between a and c is exaggerated 

in the schematic diagram). On the right of each variant, the compression (σ) and the magnetic field (H) 

which energetically prefer this variant are shown.   

 

For a brief introduction here, we show by a simple example how a magnetic field can 

induce strain in FSMA. The material in the initial state of martensite variant 2 is in a magnetic 

field Hx along x-coordinate (see the insert of Fig. 2(a) for the loading condition and step ① in 

Fig. 2(b) for the initial state). With the increase of the magnetic field, the strain εyy first 

remains almost unchanged (steps ①→② in εyy−Hx curve of Fig. 2(a)), and then increases 

significantly (③→④ in Fig. 2(a)) when the magnetic-field-favored martensite variant (i.e., 

V1) nucleates and grows via the motion of twin boundaries (defined as the interface between 

the martensite variants, see ③→④ in Fig. 2(b)). The strain εyy saturates when the material is 

totally composed of V1 (see step ⑤ in Figs. 2(a) and 2(b)). Maximum strain due to martensite 
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reorientation (V2→V1 switching) induced by the magnetic field is around 6% for 5M 

martensite.  

 

 

 

Fig. 2. Strain due to martensite reorientation induced by a magnetic field. (a) Strain−magnetic field 

curve. The loading condition is shown in the insert. (b) Schematic diagram of the micro-structural 

evolutions (i.e., distributions of martensite variants) during magnetic loading. The evolutions are 

simplified here just for illustration.  
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1.1.3. Research interests in ferromagnetic shape memory alloys  

After the previous general introduction of FSMA, some interesting research topics are 

summarized below: 

■ Theory and modeling 

The magneto-mechanical behaviors of FSMA have been theoretically studied and a 

number of constitutive models have been proposed to quantitatively/qualitatively describe and 

predict the material’s behaviors from microscopic to macroscopic scales. This thesis also 

concerns the constitutive model of FSMA. A detailed literature review of the existing models 

will be provided in Chapter 4.  

■ Fundamental studies on FSMA 

Martensite reorientation via twin boundary motion is the main mechanism in Magnetic-

Field-Induced Strain (MFIS). A high mobility of twin boundary is essential for MFIS. 

Researches on the mechanism of twin boundary motion and the factors influencing the 

mobility of twin boundary are under development.  

Twin microstructures were directly observed (e.g., Chulist et al., 2010b; Ge et al., 2004, 

2006; Sullivan and Chopra, 2004), in order to better understand the twin boundary motion on 

the microscopic scale. Besides quasi-static loadings, the microscopic twin boundary motion in 

high-frequency dynamic loadings were also studied experimentally and theoretically (e.g., 

Faran and Shilo, 2011; Lai et al., 2008). Recently, a new twin (Type II, see (Jaswon and Dove, 

1960) for the classification of twins) was observed and found to be much more mobile than 

the conventional twin (Type I) (Sozinov et al., 2011; Straka et al., 2010, 2011b). Studies on 

the different microstructures of the two twins and on how to produce Type II twin in the 

materials are still under way (e.g., Chulist et al., 2012, 2013; Heczko et al., 2013).  
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Factors influencing the mobility of the twin boundary have also been studied. The effects 

of temperature (e.g., Gavriljuk et al., 2003; Heczko and Straka, 2003; Straka et al., 2006, 

2011a, 2012), training (mechanical and magnetic) (e.g., Chmielus et al., 2008; Chulist et al., 

2010c; Straka et al., 2008), constraints (i.e., fixation of the ends of the sample) (e.g., Chmielus 

et al., 2008, 2011a) and surface conditions (e.g., Chmielus et al., 2010a, 2011b) were 

systematically investigated. One important finding in the temperature effects is that the 

twinning stress (related to the intrinsic dissipation of twin boundary motion) of Type I twin 

increases linearly with decreasing temperature, while that of Type II is temperature 

independent (Straka et al., 2012).  

■ Magneto-caloric effects  

Magneto-caloric effects are associated with the isothermal entropy change or adiabatic 

temperature change induced by an external magnetic field (Marcos et al., 2002; Planes et al., 

2009). The magnetic refrigeration technology (utilizing the magneto-caloric effects) is a 

potential replacement of the traditional gas compression/expansion technology used today 

(Pecharsky and Gschneider, 1997). Large entropy change induced by magnetic field was 

discovered in Ni-Mn-Ga alloys (e.g., Hu et al., 2001; Marcos et al., 2002; Pareti et al., 2003). 

This entropy change is related to a first-order coupled magneto-structural transition (i.e., 

ferromagnetic austenite → ferromagnetic martensite, with the saturation magnetization of the 

martensite larger than that of the austenite).  

Besides the Ni-Mn-Ga alloys, the entropy change induced by magnetic field were also 

discovered in Ni-Mn-X (X=In,Sn,Sb) alloys. The magnetic-field-induced martensitic 

transformations have been directly observed (Kainuma et al., 2006a, 2006b; Krenke et al., 

2007; Oikawa et al., 2006; Yu et al., 2007). Different from Ni-Mn-Ga alloys whose two 

structural phases (i.e., martensite and austenite) are ferromagnetic, Ni-Mn-X (X=In,Sn,Sb) 

alloys has ferromagnetic austenite and antiferromagnetic/paramagnetic martensite. So 
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applying a magnetic field will induce the magneto-structural transition from the 

antiferromagnetic/paramagnetic martensite to the ferromagnetic austenite and cool down the 

material (so-called inverse magneto-caloric effect) (Khan et al., 2007; Krenke et al., 2007; 

Moya et al., 2007). By this mechanism, meta-magnetic shape memory effect (i.e., shape 

recovery by magnetic-field-induced reverse martensitic transformation from oriented 

martensite to austenite) is discovered in Ni-Mn-X (X = In, Sn) alloys (Kainuma et al., 2006a, 

2006b). Since its discovery (Sutou et al., 2004a), Ni-Mn-X (X=In,Sn,Sb) seems to be a 

potential alternative to Ni-Mn-Ga for two important reasons: (1) it is cheaper (without the 

expensive element Ga), and (2) it has much larger working stress (as large as 100 MPa 

predicted by Kainuma et al. (2006b)). However, to induce the reverse martensitic 

transformation, a strong magnetic field is required, e.g., even for free-stress state, the required 

magnetic field should be larger than 3 T (Kainuma et al., 2006a, 2006b; Krenke et al., 2007).  

■ Novel structures 

Single crystalline FSMA shows large Magnetic-Field-Induced Strain (MFIS), but it is 

usually expensive, brittle and difficult to machine. Polycrystalline FSMA is a little more 

ductile, but it has little MFIS (Jeong et al., 2003; Ullakko et al., 2001) due to strain 

incompatibilities at grain boundaries. To overcome these problems, several solutions have 

been proposed: favorably textured FSMA polycrystals (e.g., Chulist et al., 2010a; Gaitzsch et 

al., 2007, 2009), polymer composites with FSMA particles (e.g., Feuchtwanger et al., 2003; 

Hosoda et al., 2004; Mahendran et al., 2011), polycrystalline FSMA foams (e.g., 

Boonyongmaneerat et al., 2007; Chmielus et al., 2010b; Zhang et al., 2011), etc. Moreover, 

for the potential applications of FSMA in micro-electro-mechanical systems, the FSMA 

micropillars and thin films have been intensely investigated (e.g., Auernhammer et al., 2008; 

Dong et al., 2004; Heczko et al., 2008; Ohtsuka et al., 2007, 2008; Reinhold et al., 2009; 

Thomas et al., 2008 among many others).   
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■ Applications 

Linear actuators/motors (motion in a straight line) (e.g., Gauthier et al., 2006; Suorsa et al., 

2002; Tellinen et al., 2002) using the materials’ property of magnetic-field-induced martensite 

reorientation (accompanied by large strain change) were the first applications of FSMA. Later 

on, research interests have been drawn to the fabrication of micro- and nano- actuators (e.g., 

Khelfaoui et al., 2008; Kohl et al., 2010). Bending actuators (e.g., Kohl et al., 2004, 2007) 

were also proposed based on another mechanism: applying the gradient of a magnetic field 

introduces the attractive or repulsive force, which induce the martensite reorientation in the 

FSMA beam.   

Besides actuators, sensors and energy harvesters based on the inverse effect of strain-

induced magnetization change have been developed (e.g., Karaman et al., 2007; Kohl et al., 

2013; Stephan et al., 2011; Suorsa et al., 2004); damping properties of the material have also 

been investigated for the possibility of damper applications (e.g., Wang et al., 2006; Zeng and 

al., 2010).  

 

 

1.2. Research objectives and outline of dissertation 

The material studied in this dissertation is the most important and the most utilized 

ferromagnetic shape memory alloys — single crystalline Ni-Mn-Ga alloys. The research is 

focused on the theoretical and experimental studies of martensite reorientation in Ni-Mn-Ga 

(5M martensite), and on developing a three-dimensional constitutive model to predict the 

magneto-mechanical behaviors of Ni-Mn-Ga in general loading conditions.  

The remaining parts of the dissertation are organized as follows: Chapter 2 presents an 

energy analysis of martensite reorientation under 2D/3D loadings, in order to demonstrate the 

advantages of using the materials in multi-axial loading conditions and to verify the necessity 
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of developing a 3D constitutive model. In Chapter 3, 2D mechanical and magneto-mechanical 

experiments are reported, so as to study the martensite reorientation via twin boundary motion 

in 2D conditions and to validate the advantages of using the materials in multi-axial loadings. 

Chapter 4 is devoted to the development of a 3D constitutive model of the material’s 

magneto-mechanical behaviors. A general conclusion is provided in Chapter 5.  

 

 

1.3. Notations 

The main notations used in the dissertation are summarized in Table 1.  

Table 1. Notation used in the dissertation. 

Notation Meaning Unit or Expression 
or Value 

a, aM Length of long axis of tetragonal martensite unit cell nm 

a0, aA Length of cubic austenite unit cell nm 

c, cM Length of short axis of tetragonal martensite unit cell nm 

,H H
���

 Magnetic field strength A·m-1 

Hx Magnetic field along x-coordinate of austenite lattice A·m-1 

Ku Magneto-crystalline anisotropic energy J·m-3 

,M M
���

 Magnetization vector A·m-1 

Ms Saturation magnetization A·m-1
 

Mx Magnetization along x-coordinate of austenite lattice A·m-1 

MFIS Magnetic-Field-Induced Strain  

MSMA Magnetic Shape Memory Alloys  

T Absolute temperature K 

V1, x-variant martensite variant 1  

V2, y-variant martensite variant 2  

V3 martensite variant 3  

z1 Volume fraction of martensite variant 1  

z2 Volume fraction of martensite variant 2  

z3 Volume fraction of martensite variant 3  

z12 Volume-fraction transformation between variant 1 and 2  
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Notation Meaning Unit or Expression 
or Value 

z23 Volume-fraction transformation between variant 2 and 3  

z31 Volume-fraction transformation between variant 3 and 1  

   

ε  Strain tensor  

ε0 Strain change due to martensite reorientation (a−c)/a0 

εa, ε2 Strain change (a−a0)/a0 

εc, ε1 Strain change (a0−c)/a0 

µ0 Vacuum permeability 4π×10−7 (V·s·A-1·m-1) 

σ  Stress tensor Pa 

σtw, σtwinning Twinning stress (driving force for twin boundary motion) Pa 

σxx, σx, σ1 Normal stress along x-/x1-coordinate of austenite lattice Pa 

σyy, σy, σ2 Normal stress along y-/x2-coordinate of austenite lattice Pa 

σzz, σz, σ3 Normal stress along z-/x3-coordinate of austenite lattice Pa 
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Most existing experiments investigating the martensite-variants reorientation (switching) of 

Ferromagnetic Shape Memory Alloys (FSMA) are in a simple 1D condition: an axial compressive 

stress and a transverse magnetic field. To obtain field-induced variant switching, however, the 

compressive stress (output stress) is limited by a small blocking stress (< 3 MPa). To overcome the 

stress limit, we suggest, in the first part of this chapter, using the materials in two-dimensional (2D) 

configurations: two (axial and transverse) compressive stresses and a magnetic field. Based on a 2D 

magneto-mechanical energy analysis, it is found that only the difference between the two stresses is 

limited; each of the two stresses can be larger than the blocking stress. The energy analysis is also 

incorporated into the field-stress phase diagrams (including hysteretic effect) to study the variant 

switching in different loading paths: rotating/non-rotating field-induced strain and field-assisted 

superelasticity. In the second part, the 2D magneto-mechanical energy analysis is extended to 3D and 

then incorporated into a phase diagram in terms of deviatoric stresses (including mechanical and 

magneto- stresses) to study the path-dependent (hysteretic) martensite reorientation in FSMA under 

3D cyclic loadings. Based on the phase diagram (a plane graph), general criteria for obtaining 

reversible strain under cyclic magneto-mechanical loadings are derived, which provide basic 

guidelines for FSMA’s applications under multi-axial loadings.  
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2.1. 2D analysis to improve the output stress in ferromagnetic shape 

memory alloys 

 

2.1.1. Introduction 

Ferromagnetic shape memory alloys (FSMA) are good candidates for actuators for their 

high-frequency response and large Magnetic-Field-Induced Strain (MFIS) (James and Wuttig, 

1998; Murray et al., 2000; Straka and Heczko, 2005; Ullakko et al., 1996). MFIS is caused by 

the martensite variant reorientation (variant switching) in FSMA. In literature, there are two 

ways for obtaining magnetic-field induced variant switching: (i) changing the magnitude of a 

magnetic field with a fixed direction (non-rotating field) and (ii) changing the magnetic-field 

direction with a fixed magnitude (rotating magnetic field). Although most existing 

experiments belong to the loading method (i), method (ii) has advantages in some cases, for 

example in high-speed cyclic loadings (Boonyongmaneerat et al., 2007), sample-training 

(Chmielus et al., 2008), fatigue tests (Müllner et al., 2002) and some special actuators (Ganor 

et al., 2009; Suorsa et al., 2002). Moreover, a rotating field can induce reversible variant 

switching (i.e. reversible strain) without the assistance of mechanical stresses; but non-

rotating field cannot solely induce reversible strain (Müllner et al., 2002). 

Reversible variant switching (the two variants periodically switch to each other in cyclic 

loadings) is important in smart devices like actuators. Usually, a compressive mechanical 

stress is applied on FSMA (Fig. 3(a)) to help the non-rotating field induce the reversible strain, 

where the stress and the field are perpendicular to each other. When the FSMA works as an 

actuator, the stress represents the actuation stress (i.e. output working stress). However, the 

working stress is limited by a small blocking stress (< 3 MPa depending on the magnetic 

anisotropic energy), over which the MFIS is prohibited (Ganor et al., 2008; Gans et al., 2004; 

Heczko et al., 2000; Karaca et al., 2006; Kiefer and Lagoudas, 2005; Morito et al., 2007; 



29 
 

Murray et al., 2000). From energy point of view, it is possible to increase the working stress by 

applying a constant auxiliary force on the FSMA in another direction (Fig. 1(b)). In literature, 

there are no systematic experiments or modeling for this two-dimensional (2D) case (under 

two compressive stresses and a rotating/non-rotating magnetic field). In this section, based on a 

2D energy model on the variant switching, we demonstrate that only the difference between 

the two stresses is limited by the magnetic anisotropic energy and the hysteretic effect — non-

zero twinning stress (Eq. (14) for rotating field and Eq. (20) for non-rotating field). i.e., the 

working stresses can be larger than the blocking stress in 2D configurations. 

 

 

Fig. 3. FSMA under a single compressive stress (a) and two compressive stresses (b). 

 

Several models have been proposed in literature, which are roughly classified into two 

categories: (1) micromagnetics models (e.g., Chernenko et al., 2004; James and Wuttig, 1998; 

Jin, 2009; Kiefer and Lagoudas, 2005, 2009; Paul et al., 2007; Tickle et al., 1999) can 

computationally determine microstructural evolutions; (2) energy models (e.g., Heczko and 

Straka, 2003; Heczko et al., 2006; Likhachev and Ullakko, 2000; Likhachev et al., 2004; 

Murray et al., 2001; Straka et al., 2006) focusing on macroscopic variables (e.g. switching 

stress/magnetic-field) can provide useful application guidelines (e.g. criterion of the existence 

of reversible actuation of FSMA in cyclic loadings). There are also some models (e.g., 

Marioni et al., 2002; O’Handley, 1998) in between the above two categories, which can 
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provide analytical expressions connecting macroscopic variables to the averaged (or effective) 

microstructures. In this section, an energy model is proposed to consider the 5M (five-layered 

modulated) martensite variant switching in Ni-Mn-Ga — the specimen transfers abruptly 

from one tetragonal-variant state to another (like the discontinuous model in (Murray et al., 

2001) ). In the 2D configuration (Fig. 4), we compare the energies of the two variants (I and II) 

under two compressive stresses and a magnetic field, and draw the phase diagrams (Fig. 7 and 

Fig. 10) (including hysteretic effects) to study the variant switching in different loading paths: 

rotating/non-rotating field-induced strain and field-assisted superelasticity (Fig. 8 and Fig. 11). 

 

 

2.1.2.  Energy analysis 

2.1.2.1.  Energy formulation  

In the 2D configuration, the FSMA specimen is assumed to be composed of single variant (I 

or II in Fig. 4). The energy of each variant (which is assumed to consist of a single magnetic 

domain) includes the mechanical potential Emech and the magnetic energy Emag (Zeeman energy 

and the magnetic anisotropic energy) (Heczko et al., 2002; O’Handley, 1998; Straka and 

Heczko, 2003b).  

1 1 2mech V x yE σ ε σ ε− = − ⋅ + ⋅                                                                                             (1a) 

2 1 2mech V y xE σ ε σ ε− = − ⋅ + ⋅                                                                                             (1b) 

1 2where 1 0, 1 0M M

A A

c a

a a
ε ε= − > = − > . 

2
1 1 1sin cos( )mag V uE K H Mθ α θ− = ⋅ − ⋅ ⋅ −                                                                     (2a) 

2
2 2 2sin cos( )

2mag V uE K H M
πθ α θ− = ⋅ − ⋅ ⋅ − −                                                             (2b) 
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where aA is the length of the austenite lattice; aM and cM are the lengths of the long (a-axis) and 

short (c-axis) axes of the martensite lattice; α is the angle between the magnetic field and x-

coordinate; Ku, H and M are the uniaxial magnetic anisotropic energy, the magnitudes of the 

applied magnetic field (the unit is T) and the saturation magnetization, respectively;  
1θ  and 

2θ  

are the equilibrium angles between the magnetization and the c-axis of the two variants, 

respectively (see the inserts in Figs. 5 and 6). The values of the compressive stresses (σx and σy) 

are positive here. Without losing generality, here we ignore the effects of elastic energy and 

magnetostriction, which will be discussed in sub-section 2.1.4. The energy difference 

(normalized by Ku) between the two variants is expressed as: 

( )

( ) ( )

1 1 2 21 2

2 2
0 1 2 1 2

( )

sin sin cos( ) cos( )
2

mech V mag V mech V mag VV V

u u

y x

u u

E E E EE E

K K

H M

K K

σ σ πε θ θ α θ α θ

− − − −+ − +−
=

− ⋅  = ⋅ + − − ⋅ − − − −  

        (3)        

where ε0= ε1+ε2=(aM - cM)/aA.  Eq. (3) indicates the energy preference of the two variants in the 

2D configurations. Besides the material properties and the boundary conditions (ε0, M, Ku, H, 

α, σx, and σy), the equilibrium magnetization directions (θ1 and θ2) are needed to calculate the 

energy difference. 

 

 

Fig. 4. The tetragonal martensite variants under two compressive stresses and a magnetic field. 
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2.1.2.2. Magnetization directions (θ1 and θ2) 

Usually, the equilibrium magnetization direction can be determined by minimizing the 

magnetic energy (Müllner et al., 2002; Sasso et al., 2010) as: 

1
1 1

1

2
2 2

2

0 sin 2 sin( )

0 sin 2 sin( )
2

mag V
u

mag V
u

E
K H M

E
K H M

θ α θ
θ

πθ α θ
θ

−

−

∂
= = ⋅ − ⋅ ⋅ −

∂
∂

= = ⋅ − ⋅ ⋅ − −
∂

           (4) 

Normalized by Ku, Eq. (4) changes to: 

1 1

2 2

sin 2 sin( ) 0

sin 2 sin( ) 0
2

u

u

H M

K

H M

K

θ α θ

πθ α θ

⋅− ⋅ − =

⋅− ⋅ − − =
                        (5) 

Equation (5) containing sin functions generally has no analytical solutions, except some special 

conditions. In the following, the analytical and numerical solutions are discussed in two 

magnetic loadings: a rotating field (with a fixed magnitude H) and a non-rotating field (with 

fixed direction α). Because of the symmetry of the system, we only need to study the angle 

range ∈α  [0, π/2]. 

 

Rotating magnetic field (with fixed field magnitude H) 

In this case, Eq. (5) has some analytical solutions as: 

1 1

2 2

sin 2 0 0

If 0,

sin 2 0 0u

H M

K

θ θ

θ θ

= ⇒ =
⋅ ≈ 

 = ⇒ =

                                                                 (6a) 

1

2

3
If 1,

/ 2

3

u

H M

K

αθ

π αθ

 =
⋅ = 
 −
 =


                                                                              (6b) 
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1

2

If 1,

2

u

H M

K

θ α

πθ α


 =
⋅ >> 

 = −


                      (6c) 

Equation (6) means that the magnetization is along the c-axis (which is the easy-axis of 

magnetization) when the applied field is weak ( 0
u

H M

K

⋅ ≈ ); when H is strong ( 1
u

H M

K

⋅
≫ ), 

the magnetization is along the field; for other cases, the magnetization is in between c-axis 

and the field. The dependence of the magnetization orientations (θ1 and θ2) on the field 

direction α and the field magnitude 
u

H M

K

⋅
 can be numerically determined (Fig. 5). Similar 

calculations of the magnetizations in a single magnetic domain of a single variant (Müllner et 

al., 2002; Sasso et al., 2010) and in twin structures of different specimen shapes (platelet and 

rod) with demagnetization (Chernenko et al., 2006) can be found in literature.  

 

 

Fig. 5. The dependence of the magnetization directions (in variant I and II) on the field direction at 

different field magnitudes. 
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Non-rotating magnetic field (with fixed field direction α) 

With basic knowledge of the magnetization in FSMA martensite variants, we can obtain 

the analytical solutions of Eq. (5) when α is equal to 0 or π/2 as: 

1 1 1

2

2 2

2

sin 2cos 0 0 when 0
2

If 0,

sin when 0 1
2 2

cos 2sin 0

/ 2 when 1
2

u u

u u

u

u

H M H M

K K

H M H M
arc

K KH M

H MK

K

θ θ θ

α

θ
θ θ

θ π





  ⋅ ⋅⋅ + = ⇒ = > 
 

= 
 ⋅ ⋅ = ≤ ≤  ⋅ ⋅ − = ⇒  ⋅   = >

 

    (7a) 

1

1 1

1

2 2 2

sin when 0 1
2 2

cos 2sin 0

/ 2 when 1
2

If ,
2

sin 2cos 0 0 when 0
2

u u

u

u

u u

H M H M
arc

K KH M

H MK

K

H M H M

K K

θ
θ θ

θ π

πα

θ θ θ

 ⋅ ⋅ = ≤ ≤  ⋅  ⋅ − = ⇒  ⋅   = > 
= 


 ⋅ ⋅ ⋅ + = ⇒ = >   




   (7b) 

For other cases (i.e. 0< α <π/2), solutions of Eq. (5) can be determined numerically. The 

dependence of the magnetization directions (θ1 and θ2) on the field magnitude H at different 

field directions is shown in Fig. 6. If the field direction coincides with the c-axis, the 

magnetization is always along the c-axis (no matter how large the field magnitude is). If they 

do not coincide, the magnetization direction rotates from the c-axis to the field direction when 

the field magnitude increases from zero to a large value ( 1
2 u

H M

K

⋅ > ).  

With the magnetization directions, the energy difference between the two variants (Eq.(3)) 

can be calculated and incorporated into the field-stress phase diagrams to study the variant 

switching in different loading paths with the consideration of hysteresis.   
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Fig. 6. The dependence of the magnetization directions (in variant I and II) on the field magnitude at 

different field directions. 

 

 

2.1.3. Phase diagrams and variant switching in different loading paths 

 Substituting Eqs. (6) and (7) into Eq. (3), we can calculate the energy difference of the two 

variants and plot the phase diagrams (Figs. 7, 8, 10 and 11) to study the variant-switching 

induced by the rotating and non-rotating magnetic fields, respectively. 

 

2.1.3.1. Rotating-field-induced variant switching 

The dimensionless parameter (
u

H M

K

⋅
) characterizes three ranges of the field magnitude 

(low H, medium H and large H) where the energy difference between the two variants is 

obtained by substituting Eq. (6) into Eq. (3) as:   

( )
1 2

0

when 0,    
/

y xV V

u u u

E EH M

K K K

σ σ
ε

−−⋅ ≈ =                                                                 (8a)  
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( )
1 2

0

3 2
when 1,    sin

/ 2 6 3
y xV V

u u u

E EH M

K K K

σ σ π α
ε

−−⋅  = = − − 
 

                                     (8b)                                                         

( )
1 2

0

when 1,    cos(2 )
/

y xV V

u u u

E EH M

K K K

σ σ
α

ε
−−⋅ >> = −                                                      (8c) 

where ]2/,0[ πα ∈ . From the symmetry of the system, the energy difference can be easily 

obtained for ]2,2/[ ππα ∈ : for low and large H, the forms of Eqs. (8a) and (8c) remain 

unchanged; for medium H, Eq. (8b) changes to: 

 

( ) [ ]

( ) [ ]

( ) [ ]

0

1 2

0

0

3 2
cos / 2,

/ 2 3

3 2
sin ,3 / 2

/ 2 6 3

3 2
sin 3 / 2,2

/ 2 6 3

y x

u

y xV V

u u

y x

u

K

E E

K K

K

σ σ α α π π
ε

σ σ π α α π π
ε

σ σ π α α π π
ε

 −  + ∈  
 

 −−   = − + ∈  
 

 −   − − ∈   

                       (8d) 

Equation (8) indicates the field-direction (α) dependence of the energy difference, which can 

be used to draw the phase diagrams in terms of the stresses and the field direction α as shown 

in Fig. 7.  The figures on the left-hand side/right-hand side are without/with the hysteretic 

effect (normalized twinning stress 
0

0.5
/

twinning

uK

σ
ε

=  is assumed in Figs. 7(b), 7(d) and 7(f)). The 

solid curves in Figs. 7(a), 7(c) and 7(e) are equal-energy curves with 1 2 0V V

u

E E

K

− = . The 

equal-energy curves define the borders of the two regions for stable states of variant I and II: 

when 1 2 0V V

u

E E

K

− < ( 1 2 0V V

u

E E

K

− > ), variant I (variant II) is energetically preferred. 

Considering the hysteretic effect where twinning stress is non-zero, the equal-energy curves 

are split into the switching thresholds (I�II and II�I switching thresholds in Figs. 7(b), 7(d) 

and 7(f) ). The region between the switching thresholds is meta-stable, i.e., the variant state in 

this region depends on the loading history. 
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Fig. 7. Phase diagrams in terms of the stresses and the magnetic field direction (α) at different field 

magnitudes: ( ) / 0uH M K⋅ ≈  ((a),(b)), ( ) / 1uH M K⋅ =  ((c),(d)), ( ) / 1uH M K⋅ ≫  ((e),(f)). The 

figures on the left-hand side (on the right-hand side) are without (with) hysteretic effect. 

 

In Figs. 7(a) and 7(b) (when the applied field is low, ( ) / 0uH M K⋅ ≈ ), the variant state is 

governed only by the mechanical stresses ( 0( ) / ( / )y x uKσ σ ε− ). When H is medium or large 

( ( ) / 1uH M K⋅ =  or ( ) / 1uH M K⋅ ≫  in Figs. 7(c)-(f)), the rotation of the magnetic field 

(changing α) can lead to the variant switching. For example, Fig. 8 shows the variant-
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switching induced by a large H ( ( ) / 1uH M K⋅ ≫ ). In the loading path “R1” (a constant-rate 

rotating field with σy = σx), the two variants switch to each other periodically and the time 

fractions of the two variants in a loading cycle are equal due to the symmetry of the system. If 

σy > σx (or σy < σx), variant II (or variant I) occupies a larger time fraction in a loading cycle as 

shown in the loading path “R2” (or “R3”). That means we can change the time fractions of the 

two variants in a cycle by properly setting the two stresses. Additionally, three important 

features are demonstrated by the phase diagram as follows. 

 

 

Fig. 8. Rotating-field-induced strain (c) and field-assisted superelasticity (b) derived from the 

stresses—field-direction phase diagram (a). The different loading paths (R1, R2 and R3 for rotating-

field-induced strain and S1 for field-assisted superelasticity) are indicated on the phase diagram (a).  
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Switching angles and time fractions of the variants 

Under a constant-rate rotating field ( 0α >ɺ  and ( ) / 1uH M K⋅ ≫ ), the FSMA specimen 

(initially in the state of variant I at α = 0) switches to variant II at the angle I IIα → , and back to 

variant I at the angle II Iα →  (see Fig. 8). Such switching processes will be repeated in the 

following rotation, so we just study the first semi-cycle (i.e. the rotating angle [ ]0,α π∈ ). 

With the hysteretic effect ( 1 2

0/
twinningV V

u u

E E

K K

σ
ε

− = ± ) and Eq. (8c), the two typical switching angles 

can be determined as 

0 0

1
arccos( )

2 / /
y x twinning

I II
u uK K

σ σ σ
α

ε ε→

−
= −                                                                               (9) 

0 0

1
arccos( )

2 / /
y x twinning

II I
u uK K

σ σ σ
α π

ε ε→

−
= − +                                                                       (10) 

For the loading path “R1” in Fig. 8 (σy = σx and 
0/

twinning

uK

σ
ε

= 0.5), the switching angles 

determined by Eq. (9) and (10) are: 60I IIα → = ° and 150II Iα → = ° , which agree with the 

experimental observations (Müllner et al., 2002). It is noted that the specimen is in the state of 

variant I at the angle range of  [ ] [ ]0, ,I II II Iα α π→ →∪ . So the time fraction z1 of variant I in the 

constant-rate rotation cycle is:  

( )( )1

1
I II II Iz α π α

π → →= + −                                                                           (11) 

With Eqs. (9) and (10), Eq.(11) becomes: 

1
0 0 0 0

1
arccos( ) arccos( )

2 / / / /
yy xx twinning yy xx twinning

u u u u

z
K K K K

σ σ σ σ σ σ
π ε ε ε ε

− − 
= − + + 

 
                          (12) 

Equation (12) is plotted in Fig. 9 to show the dependence of the time fraction of variant I on 

the applied stresses (
0/

y x

uK

σ σ
ε

−
) and the twinning stress (

0/
twinning

uK

σ
ε

). When y xσ σ= , the time 
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fraction of variant I is always the same as that of variant II (z1=0.5), due to the symmetry of 

the system. If variant I occupies a larger time fraction than variant II (z1>0.5), Eq.(12) predicts:          

y xσ σ<                                                                                                                         (13) 

 

 

Fig. 9. The dependence of the time fraction z1 of variant I on the applied stresses and the hysteretic 

effect (twinning stress). 

 

From Fig. 9, it is also noted that, for obtaining reversible variant switching (two variants 

switch to each other in cyclic loadings, i.e., z1 is not equal to 1 or 0), the stress difference 

(
0/

y x

uK

σ σ
ε

−
) must be in a certain range, which depends on the hysteretic effect (

0/
twinning

uK

σ
ε

). This 

issue is related to the second feature included in the phase diagrams as follows. 

 

 

Criterion of reversible variant switching 

If σy >> σx or σy << σx, the rotating field cannot induce reversible switching because the 

loading path cannot intersect the two switching thresholds in the phase diagram. The criterion 

for obtaining the rotating-field-induced reversible switching is 
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0 0 0

1 1
/ / /

twinning y x twinning

u u uK K K

σ σ σ σ
ε ε ε

− 
− − ≤ ≤ − 
 

                                                                        (14) 

The criterion (Eq. (14)) is possible only when  

0
0

1 0 /
/

twinning
u twinning

u

K
K

σ
ε σ

ε
− > ⇒ >                                    (15) 

Equation (15) is the well-known basic requirement of the Magnetic-Field-Induced-Strain 

(MFIS) in FSMA (Heczko and Straka, 2003; Söderberg et al., 2005).  

If only one mechanical stress is applied (i.e., σy ≠ 0 and σx = 0), the magnitude of the 

working stress (σy) can be estimated by expressing Eq. (14) as: 

0 0

1 1
/ /
y twinning

u uK K

σ σ
ε ε

≤ − <                                                                                                (16) 

It is noted that σtwinning, Ku and ε0 have positive values. Eq. (16) means, if the single 

compressive stress (σy) is larger than Ku/ε0 (so called blocking stress (Heczko et al., 2000)), 

the magnetic field cannot induce the reversible variant switching. From the existing 

experiments, Ku/ε0 is less than 3 MPa (Heczko et al., 2000, 2002; Murray et al., 2000). 

Therefore, the working stress σy (or the output stress limit of FSMA actuators) is low. By 

contrast, in obtaining the reversible variant switching in 2D configurations (both σy and σx are 

non-zero), the output stress σy can be larger than Ku/ε0 as long as these two stresses satisfy the 

criterion of Eq. (14). 

Equation (14) is derived for the case of a large H (i.e., 1
u

H M

K

⋅
≫ ). With the same 

approach, the criterion for other cases can be obtained analytically or numerically 

(graphically). For example, the criterion for the rotating-field-induced reversible switching for 

medium H ( 1
u

H M

K

⋅ = ) is obtained (by substituting α=π/2 into Eq. (8b) and using phase 

diagram Fig. 7(d)) as: 
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0 0 0

3 3

4 / / 4 /
twinning y x twinning

u u uK K K

σ σ σ σ
ε ε ε

− 
− − ≤ ≤ − 
 

                                                                     (17) 

 

Field-assisted superelasticity 

From the phase diagram, we can study not only the field-induced variant switching, but 

also the field-assisted superelasticity (another important feature of FSMA), as shown in the 

loading path “S1” in Fig. 8. It is noted that, besides the material properties (Ku, M, σtwinning and 

ε0), the switching stresses (the stresses triggering the variant switching I�II or II�I) depend 

on the magnetic field. In other words, the switching stresses of the superelasticity can be 

changed by properly setting the field direction α and the field magnitude H. For a large H 

( 1
u

H M

K

⋅
≫ ), the switching stresses for variant I�II and II�I can be determined with Eq. (8c) 

and the phase diagram in Fig. 8: 

0 0

0 0

cos(2 )
/ /

cos(2 )
/ /

y x twinning

u uI II

y x twinning

u uII I

K K

K K

σ σ σ
α

ε ε

σ σ σ
α

ε ε

→

→

− 
= + 

 

− 
= − 

 

                                                                            (18a) 

For example in loading path “S1” in Fig. 8 (α = 0), the switching stresses are: 

0 0

0 0

1
/ /

1
/ /

y x twinning

u uI II

y x twinning

u uII I

K K

K K

σ σ σ
ε ε

σ σ σ
ε ε

→

→

− 
= + 

 

− 
= − 

 

                                                                                       (18b) 

 

 

2.1.3.2. Non-rotating-field-induced variant switching 

Substituting Eq. (7) into Eq. (3), we obtain the energy difference with a fixed α. 
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( )

( )

2

0

1 2

0

0 2
/ 2

If 0,   

1 2
/

y x

u u u u
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u

y x
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H M H M H M

K K K K
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 −  ⋅ ⋅ ⋅
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/
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u

y x
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K
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σ σ
ε
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σ σ

ε

 −  ⋅ ⋅ ⋅
 − + ≤ ≤ 
  

− = = 
 − ⋅ + >


              (19b) 

With these energy expressions, the phase diagrams in terms of the stresses and the field 

magnitude H are plotted in Fig. 10 (where α = 0). The non-rotating-field induced variant 

switching can be demonstrated by the phase diagram (Fig. 11).  Similarly, some important 

features can be obtained from the phase diagram. 

 

  

Fig. 10. Phase diagrams in terms of the stresses and the magnetic field magnitude at the field direction 

α=0. The figure on the left-hand side (on the right-hand side) is without (with) hysteretic effect. 
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Fig. 11. Non-rotating-field induced strain (c) and field-assisted superelasticity (b) derived from the 

stresses—field-magnitude phase diagram (a). The different loading paths (N1 and N2 for non-rotating-

field induced strain; S1 and S2 for field-assisted superelasticity) are indicated on the phase diagram (a). 

 

 

Criterion of reversible variant switching 

 The criterion of setting stresses for obtaining the non-rotating-field induced reversible 

switching (α=0) is: 

0 0 0

1
/ / /

twinning y x twinning

u u uK K K

σ σ σ σ
ε ε ε

−
≤ ≤ −                                                                                     (20) 

This criterion is similar to (Heczko and Straka, 2003; Heczko et al., 2006; O’Handley, 1998) 

where a single stress is used. The solution of (σy−σx) to Eq. (20) exists only when the material’s 

properties satisfy: 

0
0 0

1 / 2
/ /

twinning twinning
u twinning

u u

K
K K

σ σ
ε σ

ε ε
< − ⇒ >                                                                  (21) 
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The condition in Eq. (21) was also pointed out in (Heczko, 2005; Straka and Heczko, 2005). It 

is noted that the requirement of the material properties is stricter in the non-rotating field (Eq. 

(21)) than in the rotating field (Eq. (15)). In other words, for FSMA with the material 

properties  σtwinnig < Ku/ε0  < 2σtwinnig, it is the rotating field rather than non-rotating field that 

can induce reversible variant switching. 

 

Switching magnetic field 

It is also noted that the switching fields for variant I�II (or II�I) depend on the stresses 

and the hysteretic effect. They can be obtained from Eq. (19a) and the phase diagram with 

hysteretic effect (twinning stress) as: 

0 0

0 0

2 1 1
/ / /

2 1 1
/ / /

y x twinning

u u uII I

y x twinning

u u uI II

H

K M K K

H

K M K K

σ σ σ
ε ε

σ σ σ
ε ε

→

→

 −   
 = − − +   
     

 −   
 = − − −        

                                                           (22a) 

 For example, when 
0

0.5
/

y x

uK

σ σ
ε

−
=  and 

0

0.25
/

y x

uK

σ σ
ε

−
=  (loading path “N2” in Fig. 11), the 

switching fields are: 

1
/

3
2 1 0.27

/ 2

u II I

u I II

H

K M

H

K M

→

→

 
= 

 

  
= − ≈    

   

                                                                                 (22b) 

 

 

Field-assisted superelasticity 

The switching stresses for the field-assisted superelasticity depend on the field magnitude H 

and the hysteretic effect. With Eq. (19a) and the phase diagram (Fig. 11), the switching stresses 

can be determined as: 
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For example in the loading path “S2” in Fig. 11 (
0

0.5
/

y x

uK

σ σ
ε

−
=  and 

0

0.25
/

y x

uK

σ σ
ε

−
= ), the 

switching stress are: 

( )
0

1
/

y x

u
I II

K

σ σ
ε

→

 −
  =
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                                                                                                      (24a) 
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/ 2
y x
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σ σ
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→

 −
  =
  

                                                                                                     (24b) 

For a large H ( 2
u

H M

K

⋅ > , loading path “S1” in Fig. 11), the switching stresses in Eq. (23) are 

the same as Eq. (18b) since the loading path “S1” in Fig. 11 is the same as “S1” in Fig. 8. 

 

  

Unified description of switching fields/stresses and experimental verification 

Since both the switching field (Eq. (22a) for field-induced switching) and switching stress 

(Eq. (23) for field-assisted superelasticity) are determined based on the energy difference (Eq. 

(19a)) and the hysteretic effect (1 2

0/
twinningV V

u u

E E

K K

σ
ε

− = ± ), there is a unified expression connecting 

these magneto-mechanical parameters: 
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1 2

H H H

H
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                                                                             (25) 

where 
( )

0/
y x twinning

uK

σ σ σ
σ

ε
−

=
∓

 and 
MK

H
H

u /
= . This formula of the switching parameters 

(switching fields/stresses) can be compared with the existing experiments (σy ≠0 and σx =0) of 

the field-induced switching and the field-assisted superelasticity in Fig. 12, where the solid 

line represents the analytic solution (Eq. (25)) and the points are experimental measurements. 

It is seen that the theoretical prediction agree with the experiments. 

 

 

Fig. 12. Comparison between the analytic solution of switching fields/stresses and the experiments of 

magnetic field-induced strain (MFIS) and field-assisted superelasticity.  

 

                   

2.1.4. Discussions 

Although the analytical results obtained above are only for some special conditions (e.g., 

1
u

H M

K

⋅
≫ and 1

u

H M

K

⋅ =  for the rotating field and α = 0 for the non-rotating field), the 
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approach (the energy preference and the phase diagram with hysteretic effect) can give 

numerical solutions for other 2D cases. The motivation of this section is to provide a simple 

approach to understand and predict the main features of the variant switching in 2D 

configurations. Although the experimental implementation of the 2D configurations (Fig. 3(b)) 

will be more complicated than that of the simple loading (Fig. 3(a)), the 2D configurations 

have many potential applications for their advantages: higher working stress, controllable 

switching field/angle/stress and controllable time fractions of the two variants in a cyclic 

loading, etc. 

For simplicity, only two variants are considered in the current model. That leads to a 

limitation of the model: the mechanical stresses must be compressive; otherwise the third 

variant (with c-axis along z-coordinate) must be considered. For example, the third variant 

might be energetically preferred in 2D tensile stresses (tensile σx and σy). In addition, the 

elastic energy, magnetostriction, demagnetization, magnetic-domain structures are ignored in 

current model. Detailed discussions on these factors can be found in literature (Chernenko et 

al., 2006; Heczko, 2005; Jin, 2009; O’Handley et al., 2000). Including these factors may 

enable the model to describe the continuous variant reorientation (i.e., the variant 

reorientation is not abrupt) (Murray et al., 2001; O’Handley et al., 2000). Moreover, the 

statistical model in (Glavatska et al., 2003) also predicted a significant dependence of the 

field-induced reversible strain on the 2D compressive stresses.  

 

 

2.1.5. Conclusions 

Graphical representation of energy preference (phase diagram with hysteretic effects) is a 

good tool to study the behaviors of FSMA under various loading conditions: rotating/non-

rotating Magnetic Field-Induced Strain (MFIS) and field-assisted superelasticity. Due to the 



49 
 

hysteretic effect (non-zero twinning stress), there is a meta-stable region in the phase diagram, 

in which the material state (variant state) depends on the loading history. 

Reversible MFIS (reversible variant switching) is obtained only when the difference 

between the two mechanical stresses (σy − σx) is in a range governed by the material properties 

(magnetic anisotropic energy Ku and lattice strain ε0) and the hysteretic effect — twinning 

stress σtwinning. The criterion and the related material requirement are different for the rotating 

field (Eqs. (14), (15)) and for the non-rotating field (Eqs. (20), (21)). Such criteria and 

material requirements for reversible MFIS provide design guidelines for FSMA actuators 

working in multiple cycles with reversible strains. 

The output stress (σy) of a FSMA actuator can be larger than the blocking stress (Ku/ε0) 

when an assistant stress (σx) is applied. By setting the difference between these stresses, we 

can also control the switching angles (Eqs. (9) and (10) for rotating field), the switching fields 

(Eq. (22a) for non-rotating field) and the time fractions of the martensite variants in cyclic 

rotating fields (Eq. (12)). Such 2D configurations can give much flexibility of FSMA 

applications in various situations. 
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2.2. Reversible strain criteria of ferromagnetic shape memory alloys under 

cyclic 3D magneto-mechanical loadings 

 

2.2.1. Introduction 

Recent researches (Glavatska et al., 2003; He et al., 2011) revealed that FSMA in 2D/3D 

configurations (with multi-axial stresses) had much more advantages than that in 1D 

configuration (with uniaxial stress). For example, in the 2D/3D configurations, higher 

working stress (higher output energy) can be provided, and the critical stress or magnetic field 

triggering the martensite reorientation can be tuned to satisfy various applications (He et al., 

2011). Therefore, there are increasing theoretical researches on FSMA’s behaviors under 

multi-axial loadings (2D/3D configurations) (e.g., Glavatska et al., 2003; He et al., 2011; 

Kiang and Tong, 2007; Kiefer and Lagoudas, 2009; L’vov et al., 2002). 

Reversible strain (with martensite variants periodically switching to each other during 

cyclic loadings) is a basic requirement in most FSMA devices under magneto-mechanical 

loadings of multiple cycles. The criteria for obtaining the reversible strain in 1D (a uniaxial 

stress plus a non-rotating magnetic field) (Heczko and Straka, 2003; Heczko et al., 2006; 

Straka et al., 2006) and 2D configurations (biaxial compression plus a rotating/non-rotating 

magnetic field) (He et al., 2011) have been derived recently. However, the 3D criteria of 

reversible strain for general cyclic magneto-mechanical loadings are seldom reported.  In this 

section, we extend our previous energy analysis (He et al., 2011) to study the switching among 

all the three tetragonal martensite variants of FSMA (i.e., five-layered modulated martensite 

variants in Ni-Mn-Ga single crystals (see Fig. 13)) under 3D magneto-mechanical cyclic 

loadings. Our aim is to provide a global picture (by a phase diagram) of the variant switching 

in FSMA and to derive general criteria for obtaining reversible strain under various 3D cyclic 

loadings.  
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Fig. 13. Schematic diagram of the austenite and the martensite variants of Ferromagnetic Shape 

Memory Alloys (FSMA). aA denotes the length of the austenite lattice; aM and cM denote the lengths of 

the long (a-axis) and short (c-axis) axes of the martensite lattice (the difference between aM and cM are 

exaggerated in the schematic diagram).  

 

In the following paragraphs, the mechanical and magnetic energies of the three tetragonal 

martensite variants are formulated and compared to determine the energy preference of the 

variants under 3D magneto-mechanical loadings (Fig. 14(a)). For a clear comparison of the 

energy preference among the three variants, deviatoric magneto-mechanical stresses (Eq. (38)) 

are defined from the energy formulation and utilized in a phase diagram (a plane graph, Fig. 15 

without hysteresis and Fig. 16 with hysteresis). In the phase diagram, various cyclic magneto-

mechanical loadings can be conveniently studied (Figs. 17~20). Based on the phase diagram, 

the general criteria for obtaining the reversible strain under various 3D cyclic loadings are 

formulated (Eq. (43)). Particularly for actuators driven by cyclic magnetic fields, the criteria of 

setting the mechanical stresses to allow field-induced reversible strain are derived (Eq. (51) for 

rotating magnetic fields and Eq. (54) for non-rotating magnetic fields).  

 

 



52 
 

2.2.2. Energy analysis and phase diagrams 

 

2.2.2.1. Energy formulation 

In order to determine the energy preference of the martensite variants, we formulate and 

compare the energy of the variants under three-dimensional normal stresses and a magnetic 

field.  For example in Fig. 14(a), the energy of variant I (which is assumed to consist of a 

single magnetic domain) includes mechanical energy Emech-vI and magnetic energy Emag-vI  

(magnetic anisotropic energy ( 1
2sin θ⋅uK ) and Zeeman energy ( MH

��
⋅− )), which can be 

expressed as: 

1 1 2 2 3 2 1 2,   where 1 0,  1 0M M
mech vI

A A

c a
E

a a
σ ε σ ε σ ε ε ε− = − ⋅ + ⋅ + ⋅ = − > = − >               (26) 

2
1sinmag vI uE K H Mθ− = ⋅ − ⋅
� �

                                                                                        (27) 

where aA is the length of the austenite lattice; aM and cM are the lengths of the long (a-axis) and 

short (c-axis) axes of the martensite lattice; α1, α2 and α3 are respectively the angles between 

the magnetic field H
�

 and x1-, x2- and x3-coordinates (Fig. 14(a)); 1θ is the angle between the 

equilibrium magnetization M
�

and x1-coordinate; Ku, H and M are the uniaxial magnetic 

anisotropic energy, the magnitudes of the applied magnetic field (the unit is T) and the 

saturation magnetization, respectively. The values of the stresses (σ1, σ2 and σ3) are positive for 

compression and negative for tension in this section. Without losing generality, we ignore the 

effects of elastic energy and magneto-striction here. This simple energy formulation is adopted 

to facilitate the discussions and predictions of the marteniste variant reorientation (He et al., 

2011; Heczko et al., 2002; O’Handley, 1998; Straka and Heczko, 2003b). 



53 
 

 
 

Fig. 14. (a) Schematic diagram of the equilibrium magnetization vector M
�

in the martensite variant I 

(short axis along x1-coordinate) under three-dimensional normal stresses (σ1, σ2, σ3) and a magnetic 

field H
�

.  α1, α2 and α3 ( 1θ , 2θ  and 3θ ) are, respectively, the angles between the coordinates and the 

magnetic field H
�

(magnetization M
�

). (b) The projection of the magnetic field H
�

on the x2-x3 plane 

(with the magnitude Hsinα1) and the projection of the vector M
�

 on the same plane (with the 

magnitude Msinθ1). 

 

It is noted that the angles (defining the directions of the applied magnetic field H
�

and the 

equilibrium magnetization M
�

) have the following geometric relations: 

2 2 2
1 2 3cos cos cos 1α α α+ + =                                                                                     (28a) 

2 2 2
1 2 3cos cos cos 1θ θ θ+ + =                                                                                         (28b) 

where 1θ , 2θ  and 3θ  are the angles between the equilibrium magnetization M
�

and x1-, x2- and 

x3-coordinates, respectively (see Fig. 14(a)). In order to determine the equilibrium magnetic 

energy, the direction of the magnetization M
�

(θ1, θ2 and θ3) needs to be determined through 

the energy minimization principle. Take the case of variant I for example (Fig. 14(a)). By Eq. 

(28b), only two of θ1, θ2 and θ3 are independent. Therefore, instead of using θ1, θ2 and θ3, we 

can describe the magnetization direction by θ1 and ψ (ψ is the angle between x2-coordinate 

and the projection of the magnetization vector M
�

 on the x2-x3 plane, see Fig. 14(b)).  
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Similarly, we can use α1 and φ to describe the direction of H
�

. Therefore, the magnetic energy 

of the martensite variant I in Eq. (27) can be expressed as: 

2
1 1 1 1 1sin (cos cos sin sin cos( ))mag vI uE K HMθ α θ α θ ϕ ψ− = ⋅ − + −                               (29) 

The equilibrium magnetization direction (θ1, ψ) can be determined by minimizing the magnetic 

energy as: 

( )
2

1 1 2
0  sin sin sin 0   (also making 0)mag vI mag vIE E

α θ φ ψ ψ φ
ψ ψ

− −∂ ∂
= → ⋅ ⋅ − = → = ≥

∂ ∂
             (30a) 

( ) ( )1 1 1 1 1
1

0  sin 2 sin cos cos sin cos 0mag vI
u

E
K H Mθ α θ φ ψ θ α

θ
−∂

= → − ⋅  ⋅ ⋅ − − ⋅  = ∂
               (30b) 

Equation (30a) means that the projections of M
�

 and H
�

have the same direction in the x2-x3 

plane. By Eq. (30a), Eq. (29) is reduced to Eq. (31a) to calculate the magnetic energy of 

variant I. 

2
1 1 1sin cos( )mag vI uE K H Mθ α θ− = ⋅ − ⋅ ⋅ −                                                      (31a) 

The first term on the right-hand side of Eq. (31a) is the magnetic anisotropic energy while the 

second term is the Zeeman energy. Similarly, the magnetic energy of variant II and III can be 

obtained as 

)cos(sin 222
2 θαθ −⋅⋅−⋅=− MHKE uvIImag        (31b) 

2
3 3 3sin cos( )mag vIII uE K H Mθ α θ− = ⋅ − ⋅ ⋅ −                                                                 (31c) 

Using Eq. (30a), Eq. (30b) can be reduced to Eq. (32a) for determining the direction θ1 of 

equilibrium magnetization in variant I: 

1 1 1sin 2 sin( ) 0uK H Mθ α θ⋅ − ⋅ ⋅ − =              for variant I                                           (32a) 

 Similarly, the equilibrium magnetization angles in variant II and III can be determined by: 

2 2 2sin 2 sin( ) 0uK H Mθ α θ⋅ − ⋅ ⋅ − =            for variant II                                          (32b) 

3 3 3sin 2 sin( ) 0uK H Mθ α θ⋅ − ⋅ ⋅ − =            for variant III                                         (32c)                                            
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Normalized by Ku, Eq. (32) changes to: 

i i isin 2 sin( ) 0
u

H M

K
θ α θ⋅− ⋅ − =                     for variant i (i = 1, 2, 3)                          (33) 

The above equations containing sin functions generally have no analytical solutions, except 

some special conditions. For example, Eq. (33) for minimizing the magnetic energy have the 

analytical solutions as: 

i iIf  0,   sin 2 0  0 for variant i  (i = 1, 2, 3)
u

H M

K
θ θ⋅ ≈ = ⇒ =                       (34a) 

i
iIf  1,                                     for variant i  (i = 1, 2, 3)

3u

H M

K

αθ⋅ = =                      (34b) 

i iIf  1,                                     for variant i  (i = 1, 2, 3)
u

H M

K
θ α⋅ =≫                      (34c) 

Equation (34) means that the magnetization is along the c-axis (the easy-axis of magnetization) 

when the applied field is weak ( / 0uH M K⋅ ≈ ); when H is strong ( / 1uH M K⋅ ≫ ), the 

magnetization is along the field; for other cases, the magnetization is in between the c-axis 

and the field. Detailed discussion about the dependences of the equilibrium magnetization 

angles on the direction and amplitude of the magnetic field can be found in (He et al., 2011). 

With Eqs. (26) and (31a), the total energy of variant I, combining mechanical energy and 

magnetic energy can be  expressed as 

2
1 1 2 2 3 2 1 1 1sin cos( )vI mech vI mag vI uE E E K H Mσ ε σ ε σ ε θ α θ− −= + = − ⋅ + ⋅ + ⋅ + ⋅ − ⋅ ⋅ −           (35a) 

Similarly, the energy of variants II and III can be obtained respectively as 

2
2 1 3 2 1 2 2 2 2      sin cos( )

vII mech vII mag vII

u

E E E

K H Mσ ε σ ε σ ε θ α θ
− −= +

= − ⋅ + ⋅ + ⋅ + ⋅ − ⋅ ⋅ −
                                  (35b) 

2
3 1 1 2 2 2 3 3 3       sin cos( )

vIII mech vIII mag vIII

u

E E E

K H Mσ ε σ ε σ ε θ α θ
− −= +

= − ⋅ + ⋅ + ⋅ + ⋅ − ⋅ ⋅ −
                          (35c) 

Normalized by Ku, the energy of the variants is expressed as 
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231 2
1 2 2 1 1 1sin cos( )vI

vI
u u u u u

E H M
E

K K K K K

σσ σε ε ε θ α θ⋅≡ = − ⋅ + ⋅ + ⋅ + − ⋅ −                        (36a) 

232 1
1 2 2 2 2 2sin cos( )vII

vII
u u u u u

E H M
E

K K K K K

σσ σε ε ε θ α θ⋅≡ = − ⋅ + ⋅ + ⋅ + − ⋅ −    (36b) 

23 1 2
1 2 2 3 3 3sin cos( )vIII

vIII
u u u u u

E H M
E

K K K K K

σ σ σε ε ε θ α θ⋅≡ = − ⋅ + ⋅ + ⋅ + − ⋅ −    (36c) 

 

2.2.2.2. Phase diagrams 

In order to compare the variants’ energy to determine their energy preference in the given 

mechanical stresses (σ1, σ2 and σ3) and a magnetic field (H
�

), we calculate the mean (meanE ) 

and the deviatoric parts (iS (i =1, 2 and 3)) of the variants’ energy as: 

( ) ( )

[ ]

2 1 2 2 2
1 2 3 1 2 3

1 1 2 2 3 3

21
sin sin sin

3 3

    cos( ) cos( ) cos( )

vI vII vIII
mean

u

u

E E E
E

K

H M

K

ε ε
σ σ σ θ θ θ

α θ α θ α θ

 −+ +≡ = + + + + +


⋅− ⋅ − + − + − 


                (37) 

( )

[ ]

1

1 2 3 2 2 2
1 2 3

0

1 1 2 2 3 3

1 1

21
   2sin sin sin

3 /

          2cos( ) cos( ) cos( )

   

mean vI

u

u

mech mag

S E E

K

H M

K

S S

σ σ σ
θ θ θ

ε

α θ α θ α θ

− −

≡ −

 − −
= − + +



⋅+ ⋅ − − − − − 


= +

                                         (38a) 

( )

[ ]

2

2 3 1 2 2 2
2 3 1

0

2 2 3 3 1 1

2 2

21
2sin sin sin

3 /

          2cos( ) cos( ) cos( )

mean vII

u

u

mech mag

S E E

K

H M

K

S S

σ σ σ
θ θ θ

ε

α θ α θ α θ

− −

≡ −

 − −
= − + +



⋅+ ⋅ − − − − − 


= +

                                         (38b) 
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( )

[ ]

3

3 1 2 2 2 2
3 1 2

0

3 3 1 1 2 2

3 3

21
2sin sin sin

3 /

           2cos( ) cos( ) cos( )

mean vIII

u

u

mech mag

S E E

K

H M

K

S S

σ σ σ
θ θ θ

ε

α θ α θ α θ

− −

≡ −

 − −
= − + +



⋅+ ⋅ − − − − − 


= +

                                        (38c) 

where: 

( )

( )

( )

[ ]

{

0 1 2

1 2 3
1

0

2 1 3
2

0

3 2 1
3

0

2 2 2
1 1 2 3 1 1 2 2 3 3

2 2 2
2 2 1 3

21

3 /

21

3 /

21

3 /

1
2sin sin sin 2cos( ) cos( ) cos( )

3

1
2sin sin sin

3

M M

A

mech
u

mech
u

mech
u

mag
u

mag

a c

a

S
K

S
K

S
K

H M
S

K

S

ε ε ε

σ σ σ
ε

σ σ σ
ε

σ σ σ
ε

θ θ θ α θ α θ α θ

θ θ θ

−

−

−

−

−

−= + =

− −
= ⋅

− −
= ⋅

− −
= ⋅

 ⋅= − + + + ⋅ − − − − − 
 

= − + + + [ ]

{ [ ]

2 2 1 1 3 3

2 2 2
3 3 2 1 3 3 2 2 1 1

2cos( ) cos( ) cos( )

1
2sin sin sin 2cos( ) cos( ) cos( )

3

u

mag
u

H M

K

H M
S

K

α θ α θ α θ

θ θ θ α θ α θ α θ−



























 ⋅ ⋅ − − − − −   



 ⋅ = − + + + ⋅ − − − − −   

      

ε0 (> 0) is the strain change due to variant switching; Si-mech and Si-mag (i =1, 2 and 3) are the 

normalized deviatoric mechanical stresses and magneto-stresses (magnetic driving force for 

variant switching), respectively. It is noted that there are simple relations between these 

deviatoric parts: 

1 2 3

1 2 3

1 2 3

0

0

0
mech mech mech

mag mag mag

S S S

S S S

S S S
− − −

− − −

 + + =
 + + =
 + + =

                                                                                       (39) 
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Therefore, a phase diagram (a plane graph) of the martensite variants under three-dimensional 

mechanical stresses and a magnetic field can be obtained in terms of the deviatoric parts Si (see 

a simple example in Fig. 15, where / 0uH M K⋅ ≈  is assumed, i.e., Si-mag = 0). It is noted that 

when there is a larger compression (i.e., larger positive stress value) along x1 direction (or x2, x3 

directions), S1 (or S2, S3) will be larger (according to Eq. (38)) so that variant I (or II, III) will 

be more energetically preferred. For example, variant II is energetically preferred under the 

single compressive stress along x2-coordinate with 2
2 1 3

0

1 and 0
/uK

σσ σ σ
ε

= = = = , which is 

represented by point A (with the coordinates:2 1 32 / 3, 1/ 3S S S= = = − ) in Fig. 15. The 

coordinates of point A are determined by the perpendicular projections of the vector OA onto 

the three axes (Si).  It is noted that the phase diagram is a planar diagram (plane graph) because 

only two of the Si coordinates are independent (see Eq. (39)).  

 

 

Fig. 15. Phase diagram of the three martensite variants in terms of normalized deviatoric magneto-

mechanical stresses without hysteresis. The phase diagram (a plane graph) consists of three regions 
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where the variants I, II and III are energetically preferred, respectively. When no magnetic field is 

applied, the deviatoric magneto-mechanical stresses Si (defined by Eq. (38)) only have the mechanical 

parts (Si=Si-mech). The coordinates (S1, S2, S3) of a point (e.g, point A) are determined by the 

perpendicular projections of the vector OA onto the three axes. Here, point A has the 

coordinates: 2 1 32 / 3, 1/ 3S S S= = = − . 

 

The phase diagram in Fig. 15 is equally divided into three regions for the energetically 

preferred states — variant I, II and III. A border between any two of these regions is the equal-

energy line signifying the reorientation between the two martensite variants. In the phase 

diagram, there are three borders (switching lines I↔II, II↔III and III↔I) defined as: 

1 2 3Switching I II ( 0)S S S↔ = <                                                       (40a) 

1 3 2Switching I III             ( 0)S S S↔ = <                                                       (40b) 

2 3 1Switching II III            ( 0)S S S↔ = <                                                      (40c) 

This kind of phase diagram has been shown to be useful in studying the martensite phase 

transformation and variant switching under three-dimensional mechanical loadings (Levitas 

and Preston, 2002a, 2002b). 

In real experiments, martensite variant reorientation (switching) needs extra energy to 

overcome some frictional force (known as twinning stress twinningσ ) (Heczko, 2005; Heczko 

and Straka, 2003; Heczko et al., 2006; Likhachev and Ullakko, 2000; Straka et al., 2011). 

Therefore, the switching lines with hysteresis are determined (using the definitions of Si in Eq. 

(38)) as: 

( ) ( )

( ) ( )

2 1 2 3
0

1 2 1 3
0

Line I II:    and  
/

Line I II:    and  
/

twinning
mean vII mean vI vI vII

u

twinning
mean vI mean vII vII vI

u

S S E E E E E E S S
K

S S E E E E E E S S
K

σ
ε

σ
ε


→ − = − − − = − = >



 ← − = − − − = − = >


    (41a) 
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3 1 3 2
0

1 3 1 2
0

Line I III:    and  
/

Line I III:    and  
/

twinning

u

twinning

u

S S S S
K

S S S S
K

σ
ε

σ
ε


→ − = >



 ← − = >


                                                                (41b) 

3 2 3 1
0

2 3 2 1
0

Line II III:    and   
/

Line II III:    and   
/

twinning

u

twinning

u

S S S S
K

S S S S
K

σ
ε

σ
ε


→ − = >



 ← − = >


                                                                               (41c) 

It is seen that the three equal-energy lines (lines I↔II, II↔III and III↔I) are replaced by six 

switching lines (considering hysteresis) as shown in Fig. 16, where the normalized twinning 

stress is assumed: 
3

1

/ 0

=
ε

σ

u

twinning

K
.  

 

 

Fig. 16. Phase diagram of the three martensite variants in terms of normalized deviatoric magneto-

mechanical stresses Si (defined in Eq. (38)) with hysteresis (normalized twinning stress is assumed: 

3

1

/ 0

=
ε

σ

u

twinning

K
). The phase diagram consists of stable regions (the shaded area where only one variant 

can exist) and meta-stable regions (un-shaded area where the variant state depends on loading history). 
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The phase diagram (with hysteresis) is divided into several parts: three stable regions (for 

variant I, II and III, respectively) and some meta-stable regions. The three stable regions are 

defined as 

1 2 1 3
0 0

Variant I          and
/ /

twinning twinning

u u

S S S S
K K

σ σ
ε ε

− ≥ − ≥                               (42a) 

2 1 2 3
0 0

Variant II         and
/ /

twinning twinning

u u

S S S S
K K

σ σ
ε ε

− ≥ − ≥                              (42b) 

3 1 3 2
0 0

Variant III        and
/ /

twinning twinning

u u

S S S S
K K

σ σ
ε ε

− ≥ − ≥                             (42c) 

In the meta-stable regions, the material’s state depends on the loading history. With this phase 

diagram, we can study the path-dependent martensite variant reorientation and derive the 

criterion for obtaining reversible strain under cyclic magneto-mechanical loadings as shown in 

the following sub-section.  

 

 

2.2.3. Criterion for obtaining reversible strain under cyclic magneto-mechanical 

loadings 

With the phase diagram (Fig. 16) and Eq. (42), a general criterion for obtaining reversible 

strain can be obtained: when a cyclic-loading path touches any two of the three stable regions, 

the cyclic switching between these two variants (denoted by i and j, i ≠ j) will occur and lead to 

reversible strain. Mathematically, we can express this criterion as: 

( )
max

0 0

       at that time   
/ /

twinning twinning
i j i k

u u

S S S S
K K

σ σ
ε ε

− ≥ − ≥                                     (43a) 

( )
min

0 0

     at that time   
/ /

twinning twinning
i j j k

u u

S S S S
K K

σ σ
ε ε

− ≤ − − ≥                                    (43b) 
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where k represents the variant other than i or j (i.e., k ≠ i, k ≠ j).  That means, when the two 

extreme points (( )
maxji SS −  and ( )

minji SS − ) of the loading path are respectively in the stable 

regions for variants i and j, the reversible strain due to the cyclic switching between these two 

variants can be obtained. 

In the remaining parts of this section, typical examples are demonstrated for the applications 

of the general criterion (Eq. (43)) in different kinds of cyclic loadings: (1) pure mechanical 

stresses, (2) pure magnetic field (rotating or non-rotating) and (3) proper stresses setting for 

obtaining reversible strain with a cyclic magnetic field.  

 

2.2.3.1. Pure mechanical stresses (ignorable magnetic field / 0uH M K⋅ ≈ ) 

The case of pure mechanical stresses is obtained by substituting Eq. (34a) into Eq. (38): 

( )

( )

( )

1 2 3
1 1

0

1
2 1 3

2 2 2
0

3

3 2 1
3 3

0

21

3 /
0

21
0 and

3 /
0

21

3 /

mech
u

mag

mag mech
u

mag

mech
u

S S
K

S

S S S
K

S

S S
K

σ σ σ
ε

σ σ σ
ε

σ σ σ
ε

−

−

− −

−

−

 − −
= = ⋅

 =  − − = = = ⋅ 
 =  − −

 = = ⋅


                             (44) 

That means, when the magnetic field is weak ( / 0uH M K⋅ ≈ ), the mechanical stresses are 

the dominant driving forces for the variant switching. In Fig. 17, it is convenient to use Eq. 

(44) to determine the loading paths of the two examples (Eqs. (45a) and (45b) ) for the pure-

mechanical cyclic loadings of compression and tension. 

  

1
1

0

2
2

0

3
3

0

1
fixed

/ 3

           changes between 1 and 1
/

fixed 0
/

u

u

u

K

K

K

σσ
ε

σσ
ε

σσ
ε


= =




= − +



= =


                    (45a) 
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1

2

3

fixed 1

changes between 1 and 1

fixed 0

σ
σ

σ

=
 − +
 =

      (45b) 

 

 

Fig. 17. The loading paths of cyclic tension and compression along x2-direction ( 1~1
/ 0

2
2 −==

ε
σσ
uK

) 

while the other stresses are fixed: ( )1 31/ 3, 0σ σ= = for path A1B1, and ( )0,1 31 == σσ for path 

A2B2. The loading path A1B1 touching two stable regions have reversible strain via cyclic switching 

between variants I and II; the loading path A2B2 touching only one stable region cannot have cyclic 

variant switching. 

 

In the first example (Eq. (45a)), the normalized stress ( 2σ ) along x2-direction cyclically 

changes between −1 (tension) and +1 (compression), while the other two stresses are fixed 

( 1σ =1/3 and 3σ =0). It is seen that the loading path (A1B1) for this example touches the two 

stable regions of variants I and II so that the material will cyclically switch between variant II 

and variant I (see Fig. 17).  If the stress along x1-direction increases (e.g., 1σ =1), the loading 
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path A2B2 (Eq. (45b)) can touch only one stable region; that means the material will stay in 

variant I without martensite reorientation or reversible strain.  According to the general 

criterion Eq. (43), when the cyclic mechanical-loading path satisfies Eq. (46), the reversible 

strain of the cyclic switching between variants I and II can be obtained. 

( )1 2 1 3max
0 0

        at that time   
/ /

twinning twinning

u u

S S S S
K K

σ σ
ε ε

− ≥ − ≥                                    (46a) 

( )1 2 2 3min
0 0

      at that time   
/ /

twinning twinning

u u

S S S S
K K

σ σ
ε ε

− ≤ − − ≥                                   (46b) 

It is easy to verify that, the loading path’s extreme points of the first example (points A1 and 

B1) satisfy respectively Eqs. (46a) and (46b), while the point B2 of the second example cannot 

satisfy Eq. (46b).  From these simple examples, it is shown that the reversible strain can be 

obtained with cyclic compression and/or cyclic tension as long as the mechanical stresses 

satisfy the general criterion Eq. (43), or particularly Eq. (46) for cyclic switching between 

variants I and II. 

 

 

2.2.3.2. Pure magnetic field ( )0321 === σσσ  

Substituting Eq. (34c) into Eq. (38), we obtain the deviatoric stresses Si for the strong 

magnetic field ( / 1uH M K⋅ ≫ ): 

2 2 2
1 1 1 2 2 2 3 3 3

1 1 1
cos ,    cos ,    cos

3 3 3mech mech mechS S S S S Sα α α− − −= + − = + − = + −    (47a) 

where the geometric relation of Eq. (28a) has been used. When no mechanical stress is applied 

(σ1 = σ2 = σ3 = 0, i.e., S1-mech = S2-mech = S3-mech = 0), Eq. (47a) can be simplified to: 

2 2 2
1 1 2 2 3 3

1 1 1
cos , cos , cos

3 3 3
S S Sα α α= − = − = −                                     (47b) 
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There are usually two types of magnetic loadings: (1) rotating magnetic field (changing the 

magnetic-field direction with a fixed magnitude) (e.g., Boonyongmaneerat et al., 2007; 

Chmielus et al., 2008; Müllner et al., 2002); (2) non-rotating magnetic field (changing the 

magnitude of a magnetic field with a fixed direction) (e.g., Murray et al., 2000; Straka and 

Heczko, 2005; Ullakko et al., 1996). 

 

Rotating magnetic field  

In literature, there are some experiments with a magnetic field rotating around a certain axis 

of the single crystal FSMA (e.g., Boonyongmaneerat et al., 2007; Chmielus et al., 2008; 

Müllner et al., 2002). For example, a strong magnetic field rotates around x3-axis (i.e., fixed α3 

= 90o and the field rotates in the x1-x2 plane, see the insert of Fig. 18) can induce reversible 

strain (cyclic variant switching) without mechanical stresses. Using Eq. (47b), the loading path 

AB (in Fig. 18) representing a strong magnetic field rotating around x3-axis can be plotted, 

which touches the two stable regions for variants I and II. It is noted that, for the rotating field 

around x3-axis, the angle α3 is fixed (= 90o) and S3 is also fixed (S3 = −1/3 according to Eq. 

(47b)); therefore, the line AB is perpendicular to the coordinate S3 in Fig. 18. Similarly, lines 

BC and CA in Fig. 18 represent the paths of a strong rotating field around x1-axis and x2-axis 

respectively.  

To obtain the reversible strain with cyclic switching between variants i and j, the criterion 

Eq. (43) must be satisfied. It is easy to verify that the strong rotating field without mechanical 

stresses (Eq. (47b)) satisfies the criterion because (Si − Sj) cyclically changes between −1 and 

+1, and the normalized twinning stress is always positive and less than 1: 

[ ] 1,  +1i jS S− ∈ −                                                                                                     (48a) 

0

0 1
/

twinning

uK

σ
ε

< <                                                                                                             (48b) 
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Equation (48b) is the basic requirement of the material properties for the Magnetic-Field-

Induced-Strain (MFIS) in FSMA (He et al., 2011; Heczko and Straka, 2003; Söderberg et al., 

2005). 

 

 

Fig. 18. The loading paths of the strong rotating magnetic fields ( / 1uH M K⋅ ≫ ) without mechanical 

stresses ( 0321 === σσσ ): BC for rotation around x1-axis (α1 = 90o), CA for rotation around x2-axis 

(α2 = 90o), AB for rotation around x3-axis (α3 = 90o). Each loading path can touch two stable regions 

leading to cyclic switching between the two variants of the stable regions. 

 

 

Non-rotating magnetic field  

Usually, non-rotating magnetic fields are applied along a certain axis of the single crystal. 

For example, the direction of the applied magnetic field is fixed in x1-direction (i.e., α1 = 0°, 

α2 = 90° and α3 = 90°) while the magnitude of the magnetic field cyclically changes between 

zero (H = 0) and a large value ( / 1uH M K⋅ ≫ ). With Eq. (44) for weak fields, Eq. (47a) for 
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strong fields and Si-mech = 0 (no mechanical stress), the two extreme points of the loading path 

(in Fig. 19) corresponding to H = 0 and / 1uH M K⋅ ≫ are point O (S1 = S2 = S3 = 0) and point 

A (S1 = 2/3 , S2 = S3 = −1/3), respectively. Based on the symmetry of Eq. (38), the loading path 

of the non-rotating field along x1-axis is represented by the line OA. Similarly, the loading 

paths for the cyclic non-rotating magnetic fields along x2-axis and x3-axis can be represented 

by OB and OC, respectively, in Fig. 19. It is seen that a non-rotating cyclic magnetic field 

cannot induce reversible variant switching because its loading path cannot touch two stable 

regions of the phase diagram. In real applications of non-rotating magnetic fields, mechanical 

stresses are needed to obtain reversible strain. Thus, an important question arises: how to set 

the mechanical stresses to allow the cyclic magnetic field to induce reversible strain? This 

question is answered in the following sub-section.  

 

 

Fig. 19. The loading paths of the non-rotating magnetic fields (with magnitudes cyclically changing 

between H = 0 and a large value / 1uH M K⋅ ≫ ) in the phase diagram: OA, OB and OC are the 

loading paths of the magnetic field along x1-axis, x2-axis and x3-axis, respectively. Each loading path 
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can touch only one stable region; therefore, the non-rotating magnetic field cannot solely induce cyclic 

variant switching. 

 

 

2.2.3.3. Stress-setting for reversible MFIS (Magnetic-Field-Induced-Strain) 

In most of the FSMA actuators, the mechanical stresses are properly designed (fixed) and a 

changing magnetic field is used to achieve high-frequency control of the deformation. In this 

subsection, from the general criterion Eq. (43), we derive the criterion of setting the 

mechanical stresses to allow the reversible strain induced by a strong rotating/non-rotating 

magnetic field.   

 

Rotating magnetic field  

For a strong magnetic field rotating around xk-axis ( o
k 90=α  and / 1uH M K⋅ ≫ ), the range 

of the values of (Si − Sj) can be obtained from Eqs. (47a), (38) and (28a) as 
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Equation (49) means that (Si − Sj) cyclically changes between ( ) 0/ ( / ) 1i j uKσ σ ε − −   and 

( ) 0/ ( / ) 1i j uKσ σ ε − +   during the field rotation. To satisfy the general criterion (Eq. (43)) to 

obtain rotating-field-induced reversible strain by variant switching between i and j, the 

loading path must touch the two stable regions as: 
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That means the mechanical stresses need to satisfy 
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ε ε ε
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It is seen that, as long as the mechanical stresses satisfy Eq. (51), a strong rotating field 

(around xk-axis) can induce reversible strain via the cyclic switching between variants i and j. 

Particularly, for the cases of two-dimensional compression (i.e., σk = 0, σi >0 and σj >0), the 

requirements of Eqs. (51b) and (51c) are automatically satisfied (note Eq. (48b)) and only Eq. 

(51a) need to be taken care of. This criterion for 2D compression (Eq. (51a)) was also obtained 

with simple 2D energy analysis in (He et al., 2011). It is also noted that the trivial case — a 

pure rotating field without mechanical stress (σ1 = σ2 = σ3 = 0) can satisfy Eq. (51); that means 

a pure rotating field can induce reversible strain as discussed in Fig. 18. 

 

Non-rotating magnetic field  

For a non-rotating magnetic field along xi-axis ( 0 ,  90  and 90o o o
i j kα α α= = = ), whose 

amplitude cyclically changes between zero (H = 0) and a large value ( / 1uH M K⋅ ≫ ), (Si−Sj) 

cyclically changes between ( ) 0/ ( / )i j uKσ σ ε −   and ( ) 0/ ( / ) 1i j uKσ σ ε − +   : 

( ) ( )
0 0

~ 1
/ /

i j i j

i j
u u

S S
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σ σ σ σ
ε ε

   − −
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                                                                        (52) 

For obtaining reversible strain, similar to Eq. (50), the loading path should touch the two stable 

regions as 
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Thus, the criteria of setting the mechanical stresses to allow the reversible strain (induced by a 

non-rotating cyclic magnetic field along xi-axis) are 
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Particularly, for the cases of two-dimensional compressions (i.e., σk = 0, σi  > 0 and σj  > 0), 

Eq. (54b) is automatically satisfied (note Eq. (48b)) and Eq. (54c) is included in Eq. (54a); 

therefore, only Eq. (54a) needs to be taken care of. This criterion for 2D compressions (Eq. 

(54a)) was also obtained in (He et al., 2011). The trivial case — a pure non-rotating field 

without mechanical stress (σi = σj = σk = 0) cannot satisfy Eq. (54a) because the twinning stress 

(frictional force) is always positive (Eq. (48b)). That means pure non-rotating field cannot 

induce reversible strain as discussed in Fig. 19. In most existing experiments with the non-

rotating field, a uniaxial mechanical stress σj  is applied (perpendicular to the magnetic field 

along xi-axis) to obtain the field-induced reversible strain (see the insert of Fig. 20). In the 

uniaxial-mechanical cases (σi =σk=0 and σj ≠0), the requirements of Eq. (54) are simplified to 

0 0 0

1
/ / /

twinning j twinning

u u uK K K

σ σ σ
ε ε ε

≤ ≤ −                                                                                      (55) 

Figure 20 shows some typical loading paths of the non-rotating magnetic field along x1-axis 

and the uniaxial mechanical stress along x2-axis. The paths O1A1, O2A2 and O3A3 are for 
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2 2 0/ ( / )uKσ σ ε=  =1/3, 2/3 and 1, respectively; and the twinning stress is assumed to be 

0/ ( / )twinning uKσ ε  =1/3. It is seen that the first two paths (O1A1 and O2A2) satisfying Eq. (55) 

can touch two stable regions leading to cyclic variant switching and reversible strain, while the 

last path (O3A3) cannot. The criterion (Eq. (55)) of setting the uniaxial mechanical stress for 

allowing non-rotating-field-induced reversible strain has been verified in experiments (Karaca 

et al., 2006; Heczko, 2005; Heczko et al., 2000, 2006). 

 

 

Fig. 20. The loading paths of the non-rotating magnetic fields along x1-axis (magnitudes cyclically 

changing between H = 0 and a large value / 1uH M K⋅ ≫ ) with a constant mechanical stress 2σ  

along x2-axis: O1A1, O2A2 and O3A3 are the loading paths of ==
0

2
2 /ε

σσ
uK

1/3, 2/3 and 1, respectively. 

Paths O1A1 and O2A2 touching two stable regions can lead to cyclic switching between variants I and 

II; path O3A3 touching only one stable region cannot lead to cyclic variant switching. 
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2.2.4. Discussions 

The deviatoric stresses Si consisting of the mechanical stresses and the magneto-stresses 

have the simple superposition form (Si = Si-mech + Si-mag in Eq. (38)) because the detailed 

magneto-mechanical couplings (e.g., magnetostriction, elastic energy and magnetic-domain 

structures) are ignored here. Including these factors in the analysis may enable the model to 

describe the continuous martensite reorientation (i.e., the martensite reorientation is not abrupt) 

(Murray et al., 2001; O’Handley et al., 2000). As the aim of this section is to provide a simple 

global picture of the variant switching under 3D cyclic loadings, the derived formulae of Si and 

the associated phase diagrams facilitate the analytical predictions and graphical representations 

of the magneto-mechanical effects on the variant switching (martensite reorientation). 

Although the previous parts discussing the analytical solutions and the associated loading 

paths in the phase diagrams are only for some typical cases H  = 0 and H·M/Ku >> 1, it is not 

difficult to use the same approach to analytically or numerically determine the loading paths 

for other magneto-mechanical loadings. After the loading paths in the phase diagram are 

obtained, the switching parameters (switching stress or switching magnetic field or switching 

rotation angle) triggering the martensite reorientation can be determined (He et al., 2011), from 

which the time fractions of the variants in a cycle can be controlled by properly setting the 

mechanical stresses and/or the magnetic field.  

The above analysis is focused on the stable regions of the phase diagrams to derive simple 

criteria for obtaining reversible strain. In fact, the material’s behaviour in the meta-stable 

regions of the phase diagram is more complex. For example, some cyclic-loading paths within 

the meta-stable regions can still cross the switching lines (e.g., crossing the lines P1Q1 and 

P2Q2 in Fig. 16), which might lead to reversible strain if the material’s initial state is properly 

set. In this sense, the criteria derived in this paper are just sufficient conditions for obtaining 
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reversible strain, rather than necessary conditions. Nevertheless, for reliable designs of FSMA 

devices (e.g., actuators), the criteria (sufficient conditions) are preferred. 

As the martensite variants are tetragonal (Fig. 13), the anisotropy of the magnetization 

energy should be better described by tetragonal symmetry. Thus, two or more material 

parameters would be needed to characterize the anisotropic magnetic energy. So, the energy 

formulation above would be more complex; but the approach is still useful: expressing the 

loading path in the phase diagram in terms of the deviatoric stresses Si to study the hysteretic 

martensite reorientation. Instead of the tetragonal symmetry, the assumption of uniaxial 

magnetic anisotropy (with one material parameter, Ku, in Eq. (27)) is adopted in the section in 

order to make the energy formulation simpler and to facilitate the derivation of some analytical 

solutions and the key physical concepts. 

It is also noted in recent publications (Straka et al., 2011b) that different twin 

microstructures with different values of twinning stress (σtwinning) can be formed in the material. 

But, the dependence of the twinning microstructures on the 3D magneto-mechanical loading 

conditions is still unknown. In our 3D macroscopic model, the twinning stress σtwinning is 

treated as a constant for an FSMA material with a given twin microstructure (i.e., σtwinning does 

not change with the loading conditions). 

 

2.2.5. Conclusions 

Phase diagrams in terms of the deviatoric stresses Si (including mechanical stresses and 

magneto-stresses) are useful in studying path-dependent (hysteretic) martensite variant 

reorientation in Ferromagnetic Shape Memory Alloys (FSMA) under complex three-

dimensional magneto-mechanical loadings. The superposition form of the deviatoric stresses 

(Si = Si-mech + Si-mag in Eq. (38)) facilitates the analytical predictions and graphical 
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representations of the magneto-mechanical effects on the variant switching (martensite 

reorientation).  

General criteria (Eq. (43)) for obtaining reversible strain under cyclic magneto-mechanical 

loadings are obtained.  As long as the criteria are satisfied, all kinds of mechanical stresses 

(cyclic tension and/or cyclic compression) and magnetic fields (rotating or non-rotating) can 

induce a large reversible strain by the stress-induced and/or field-induced cyclic martensite 

reorientation between two or more variants.   

For magnetic-field-driven actuators, the criteria of setting the mechanical stresses to allow 

the magnetic-field-induced reversible strain are derived (Eq. (51) for rotating fields and Eq. 

(54) for non-rotating fields), which provide guidelines for designing FSMA actuators in 

various applications. 

 

 

2.3. Chapter conclusion 

In this chapter, a 2D/3D energy analysis of martensite reorientation between/among 

two/three tetragonal martensite variants is presented. Based on this analysis, phase diagrams 

are drawn to graphically study the path-dependent martensite reorientation of FSMA in 

general multi-axial magneto-mechanical loading conditions. Criteria and the related material 

requirements for obtaining the reversible strain in cyclic loadings are also derived. 

In the 2D/3D energy analysis, we assume that the loading conditions (i.e., uni-/multi-axial 

loading) have no influence on the twin microstructures of the material so that the twinning 

stress σtwinning is supposed to be constant in all loading conditions. But this assumption needs 

the experimental support. Moreover, shown by the 2D/3D energy analysis, the most important 

advantage of using FSMA in multi-axial loadings is that a higher working stress can be 

obtained (higher than the blocking stress in 1D configuration). And this theoretical prediction 
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also needs the experimental verifications. Based on these objectives, the following chapter 

(Chapter 3) is devoted to the experimental study of martensite reorientation in FSMA under 

multi-axial loading conditions.  
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Chapter 3Chapter 3Chapter 3Chapter 3   Experimental analysis of martensite 

reorientation under multi-axial magneto-mechanical loadings 
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Martensite reorientation via twin boundary motion in Ni-Mn-Ga single crystals was experimentally 

studied under biaxial compressions. The threshold driving force (i.e., twinning stress σtwinning, related 

to the intrinsic energy dissipation) of the twin boundary motion, and the transformation strain due to 

martensite reorientation are found to be constant in all tested 2D stress states. These findings imply 

that the materials can work at high levels of multi-axial stresses while keeping their advantages — low 

intrinsic dissipation and large reversible strain. Followed by the 2D compression tests, the 2D 

magneto-mechanical tests (i.e., magnetic field with biaxial compressions) are reported. Preliminary 

results show that the working stress increases with the auxiliary stress.  
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3.1. Biaxial compression tests 

3.1.1. Introduction 

The large strain of Ferromagnetic Shape Memory Alloys (FSMA) is due to the martensite 

reorientation via twin boundary motion driven by mechanical stresses and/or magnetic fields. 

In literature, all of the experiments studying the martensite reorientation of FSMA were 

focused on a simple loading condition: a uniaxial mechanical stress and/or a magnetic field 

(e.g., Heczko et al., 2000; Karaca et al., 2006; Müllner et al., 2002, 2003, 2004; Murray et al., 

2000; Straka and Heczko, 2005). However, the uniaxial stress cannot exceed a critical value 

(called blocking stress), otherwise the magnetic field cannot induce the martensite 

reorientation. The small blocking stress (usually smaller than 3 MPa (Heczko et al., 2000; 

Murray et al., 2000) ) leads to the low working stresses of FSMA-based actuators. Recent 

2D/3D energy analysis (He et al., 2011, 2012) and constitutive models (Glavatska et al., 2003; 

Hirsinger and Lexcellent, 2003a; Kiefer and Lagoudas, 2009) implied that FSMA can work at 

high stress levels in 2D/3D configurations (multi-axial stresses with a magnetic field). But, all 

the existing theories assumed the kinetics of twin boundary motion in 2D/3D configurations 

based on the existing uniaxial experiments. This section experimentally studies the twin 

boundary motion in NiMnGa FSMA single crystals under various biaxial-loading conditions, 

in order to explore the possibility of using FSMA in multi-axial stresses of high levels. 

 

 

3.1.2. Experiment 

3.1.2.1. Material and experimental procedures 

Single crystal Ni50.0Mn28.5Ga21.5 (at. %) samples of the dimensions 1 2.5 20× × mm3 (with 

faces parallel to the {100} planes of the parent austenite) supplied by Adaptamat Ltd. are used 

in the quasi-static tests at room temperature, where the material is in the state of tetragonal 
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five-layered modulated martensite (5M). From the DSC test (Differential Scanning 

Calorimeter), the temperatures of martensite start (Ms), martensite finish (Mf), austenite start 

(As) and austenite finish (Af) are respectively 50.5 °C, 48.5 °C, 57 °C, 58.5 °C, and the latent 

heat of martensitic transformation is 7.7 J/g.  

The lab-built experimental setup for symmetric biaxial loadings is shown in Fig. 21(a). 

Biaxial compressive stresses (σxx along x-coordinate and σyy along y-coordinate) are applied 

by four loading heads and measured by load cells SCAIME K1563 (resolution: ± 0.1 N 

within ± 100 N). To reduce the friction, the clampers (see Fig. 21(a)) were polished by 5µm 

SiC paper and graphite powder was spread on them.  

 

  

Fig. 21. (a) Schematic diagram of the experimental setup for symmetric biaxial compression tests. (b) 

Friction occurs on the contact surfaces between the clampers and the sample’s y-z surfaces. Dotted 

lines are marked on the sample for reference showing the relative motion between the sample and the 

clampers. 

 

To observe the motion of twin boundaries (identified as the boundaries separating low-

strain and high-strain regions), the local strain is measured using Digital Image Correlation 
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(DIC) technique — an in situ optical correlation method to measure the displacement of the 

sample surface (x-y surface in Fig. 21(a)) by a CCD camera (Allied Vision Technologies 

PIKE F-505: 2452 x 2054 pixels). The nominal strain is calculated as the average strain in the 

gauge section.  

Before each test, uniaxial compressive stress (σxx = 9 MPa) is applied on the sample to 

make it back to the initial state ― single martensite variant with its short-axis along x-

coordinate (energetically preferred by σxx), so-called x-variant. During each test, σxx is fixed at 

a certain level by a feed-back control system (error < 1%), while the compressive loading and 

unloading along y-coordinate is displacement-controlled (nominal strain rate: 57.7 10−× /s). 

Loading stops when σyy increases to 24 MPa, and then unloading takes place until σyy returns 

to zero. The values of stresses and strains are positive for compression here. 

 

3.1.2.2. Characterization of experimental setup 

During the experiments, the sample contracts or elongates, leading to the external friction 

between the clampers and the sample’s surfaces (see Fig. 21(b)). To estimate the effects of the 

external friction, the friction coefficient µ is measured. Fig. 22(a) shows the schematic 

diagram of the experimental setup for measuring µ. A displacement uy along y-coordinate is 

applied by a stepper motor (constant velocity: 61 10−× m/s), while a constant normal force Fx 

along x-coordinate is applied on the sample’s y-z surfaces. The total frictional force (2fy) is 

measured by a load cell at the end of the sample where uy is applied (the other end is stress 

free). It is assumed that the frictional force is uniformly distributed. Then the friction 

coefficient µ can be calculated as: µ = (2fy) / (2Fx) = fy / Fx. Fig. 22(b) shows the frictional 

force fy measured at different levels of normal force Fx, where µ is determined to be 0.095.  
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Fig. 22. (a) Schematic diagram of measuring the friction coefficient. (b) Frictional force fy at different 

levels of normal force Fx: squares are the experimental results and the solid line is the fitting 

line: y x0.095f F= .  

 

 

3.1.3. Results and discussions 

3.1.3.1. Experimental observations 

Fig. 23 shows three typical nominal stress−strain curves (σyy−εyy) among our 17 tests at 

different levels of σxx (0 ~ 9 MPa). For all of the σyy−εyy curves, please refer to Appendix A.1.  

Fig. 23(a) is for the martensite reorientation under uniaxial compression σyy (σxx = 0), 

where the sample’s initial state is x-variant. After a very small elastic loading, martensite 

reorientation from x-variant to y-variant (with short-axis along y-coordinate, energetically 

preferred by σyy) starts. During the reorientation, with increasing nominal strain εyy, the 

nominal stress σyy remains nearly constant (stress plateau) while y-variant (with large local 

strain εyy) nucleates and grows via the interface (twin boundary) propagation (see the DIC 

images accompanying the curve). After the reorientation, the elastic deformation of y-variant 

leads to significant stress increase. Transformation strain εtr due to martensite reorientation is 

determined as the strain change between the two elastic loading parts. During unloading, only 

the small elastic deformation is recovered. Residual strain of 5.7% appears because the 
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material’s state at the end of unloading is y-variant rather than x-variant (initial state). In this 

uniaxial test, the residual strain represents the transformation strain.  

For biaxial compressions (σxx ≠ 0 in Figs. 23(b) and 23(c)), the transformation strain εtr 

changes little (εtr = 5% ~ 5.7%) while the residual strain decreases significantly with 

increasing σxx because reverse martensite reorientation from y-variant to x-variant is induced 

during unloading. At high levels of σxx (e.g., 9 MPa in Fig. 23(c)), super-elasticity can be 

obtained (zero residual strain), where the evolutions of the deformation patterns (strain 

distributions shown by the DIC images) are reversible. Compared with Fig. 23(a), the 

deformation patterns in Figs. 23(b) and 23(c) are not sharp (x-variant and y-variant are not 

clearly separated). The reason might be due to the 2D elastic effects of the kink at the twin 

boundary and 2D geometric compatibility (He and Sun, 2010; Straka et al., 2010). 

 

 

 
Fig. 23.  Nominal stress−strain curves (σyy−εyy) at different levels of σxx:  (a) σxx = 0 MPa, (b) σxx = 5 

MPa,   (c) σxx = 9 MPa.  The DIC images show the distributions of local strain εyy. 
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It is also seen in Fig. 23 that the upper/lower plateau stress σyy for forward/reverse 

martensite reorientation increases with increasing σxx. The two plateaus (denoted respectively 

by σupp-plat and σlow-plat) are estimated from the σyy−εyy curve (σyy at εyy = 3%). The dependence 

of σupp-plat and σlow-plat on σxx is shown in Fig. 25(a). It is found that the nominal stress-

hysteresis (difference between the two nominal plateau stresses (σupp-plat − σlow-plat)) increases 

with increasing σxx.  In fact, this observed stress-hysteresis consists of two parts (i.e., the 

material intrinsic hysteresis and the structural external friction), which will be discussed in the 

following sub-section. 

 

 

3.1.3.2. Intrinsic plateau stresses (σf and σr) for forward and reverse martensite 

reorientations 

The compressive stress σyy is applied by two stepper motors at each end of the sample (see 

Fig. 21(a)). By symmetry, the center of the sample (point ‘O’ in Fig. 24) can be taken to be 

fixed, and we only need to consider a half of the sample for the force analysis.  

 

 

Fig. 24. Force analysis of a half sample during loading. fy is the frictional force on each contact surface. 
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When the sample contracts during loading, the total frictional force (2fy) on the contact 

surfaces is opposite to the applied compressive stress σyy. Then the compressive stress center
yyσ  

at the sample center is calculated as:  

1

2center
yy yy yf

s
σ σ= −                                                                                                        (56) 

where s1 is the cross section area of x-z surface ( 21 2.5 mm× , see Figs. 24 and 21(a)). With the 

measured friction coefficient µ, the total frictional force is obtained: 

2
22 2 ( )

2y xx xx

s
f sµ σ µσ= ⋅ =                                                                                           (57) 

where s2 is the contact area of y-z surface between the sample and the clampers 

( 21 10 mm× with the clamper length of 10 mm, see Figs. 24 and 21(a)). Substituting Eq. (57) 

into Eq. (56), we obtain the compressive stress at the sample center (intrinsic stress without 

external friction): 

2

1

center
yy yy xx

s

s
σ σ µσ= −                                                                                                    (58) 

With Eq. (58), the intrinsic plateau stress for forward martensite reorientation (denoted by 

σf) can be calculated from the nominal plateau stress σupp-plat: 

2
f upp-plat xx

1

s

s
σ σ µσ= −                                                                                                   (59) 

During unloading, the sample elongates. So the frictional force is in the same direction as 

the applied stress σyy. By similar analysis, the intrinsic plateau stress σr for reverse martensite 

reorientation is obtained 

2
r low-plat xx

1

s

s
σ σ µσ= +                                                                                                   (60) 

With Eqs. (59) and (60), we can obtain Eq. (61)  

2
upp-plat low-plat xx f r

1

2 ( )
s

s
σ σ µσ σ σ− = + −                                                                        (61) 
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where the two contributions to the nominal stress-hysteresis (σupp-plat − σlow-plat) can be 

distinguished: one is related to the energy dissipation of the external friction ( 2
xx

1

2
s

s
µσ ) and it 

is proportional to xxσ ; the other is the material intrinsic stress-hysteresis (σf −σr), which is 

related to the intrinsic dissipation of martensite reorientation. Fig. 25(b) shows the 

σxx−dependence of σf and σr. It is seen that the intrinsic stress-hysteresis (σf −σr) is almost a 

constant: 2σtwinning = 2.4 MPa, where the threshold driving force for twin boundary motion 

σtwinning (so-called twinning stress, related to the intrinsic energy dissipation) can be 

determined as: σtwinning = (σf − σr)/2 = 1.2 MPa.  

 

 

Fig. 25. (a) Nominal plateau stresses (σupp-plat, σlow-plat) of the stress−strain curves (σyy−εyy). (b) Intrinsic 

plateau stresses (σf, σr) calculated with Eqs. (59) and (60) to remove the external friction effects. The 

theoretical predictions for forward and reverse martensite reorientations (two lines) are, respectively, 

σf = σxx+σtwinning and σr = σxx−σtwinning, where σtwinning = 1.2 MPa. 

 

Fig. 25(b) is actually a phase diagram of the martensite reorientation in NiMnGa single 

crystal under 2D compressive stresses. It is divided into three regions: two stable regions 
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respectively for x-variant and y-variant, and one meta-stable region where the material’s state 

depends on the loading history.  

The effects of the auxiliary compression σxx on the material’s mechanical behavior (σyy−εyy 

curve) are similar to that of a magnetic field Hx along x-coordinate.  In the experiments of 

field-assisted super-elasticity (compression σyy with a constant magnetic field Hx), the 

threshold driving force σtwinning (≈ 1.4 MPa) for twin boundary motion and the transformation 

strain εtr (≈ 6%) due to martensite reorientation are also found to be constant (Straka and 

Heczko, 2003a). While the microscopic structures of twin boundaries would have a 

significant influence on σtwinning (Straka et al., 2011b), the macroscopic twin structures (i.e., 

the deformation patterns: ‘//’ in Fig. 23(a) and ‘M’ in Fig. 23(c)) have little influence on 

σtwinning in our biaxial tests. Besides 2D compression, the discussion on 2D tension and general 

3D magneto-mechanical loadings can be found in (He et al., 2012).  

 

 

3.1.4. Conclusions 

From the 2D compression tests on single crystal NiMnGa 5M martensite, it is found that 

the material can work at high stress levels (plateau stress > 12 MPa), which are much larger 

than the blocking stress (< 3 MPa) in 1D configuration. At high levels of biaxial loadings, 

super-elasticity was observed. Based on the experiments, a phase diagram of martensite 

reorientation is obtained, which helps us easily determine the material’s state under various 

2D stresses. The energy dissipation due to the structural external friction is proportional to the 

stress levels, while the material intrinsic energy dissipation for twin boundary motion is found 

to be constant in all tested 2D stress states and the variation of the transformation strain due to 

martensite reorientation is negligible (< 15%). These findings imply the possibility of using 

FSMA in multi-axial magneto-mechanical loading conditions.   
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3.2. Biaxial magneto-mechanical tests 

3.2.1. Material and experimental procedures 

Recent 2D/3D energy analysis (He et al., 2011, 2012) shows that FSMA in multi-axial 

loadings can have high levels of working stress (higher than the blocking stress in 1D 

configuration). To verify this theoretical prediction, the 2D magneto-mechanical tests are 

reported in this section. 

The samples of single crystalline Ni50.0Mn28.5Ga21.5 alloy used in the previous 2D 

compression tests are also used here. Fig. 26 shows the experimental setup of 2D magneto-

mechanical tests at room temperature. Two constant compressive stresses (i.e., σyy along y-

coordinate and σxx along x-coordinate) are applied respectively by a dead load (see Fig. 26(a)) 

and a lever system (Fig. 26(b)). The strain εyy along y-coordinate is determined as: εyy = ∆l/l0, 

where l0 is the gauge length of the sample, and ∆l is the vertical displacement of a plate fixed 

to the top of the sample (see Fig. 26(a)). ∆l is measured by a laser displacement sensor 

(Keyence LK-G37: 0.005± µm within 5± mm). All the mechanical loading systems are made 

up of non-magnetic materials (aluminum or brass). An electromagnet (Varian Associates 

Model V3400-260) is used to generate a uniform magnetic field Hx along x-coordinate in the 

volume of 35 x 35 x 35 mm3. The applied magnetic field strength is monitored by the electric 

current passing through the wire of the electromagnet.  

Before each test, a dead load of 1 kg (compressive stress of 4 MPa) is applied along y-

coordinate in order to guarantee that the sample is in the initial state of σyy-preferred 

martensite variant. During the test, σxx and σyy are fixed at certain levels, while the magnetic 

field µ0Hx is cycled between ± 0.75 T at a rate of 36 10−× T/s (i.e., frequency: 0.002 Hz).  
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Fig. 26. (a) Schematic diagram of the 2D magneto-mechanical setup. (b) Lever system for applying 

the compressive stress σxx. 

 

 

3.2.2. Preliminary results 

Figure 27 shows the magnetic-field-induced strains at different levels of compressive 

stresses (σxx and σyy). It is seen that the maximum working stress max
yyσ  (stress over which no 

strain change is observed) increases with increasing σxx: 
max
yyσ = 1.6 MPa at σxx = 0 MPa (Fig. 

27(a)),
 

max
yyσ = 4 MPa at σxx = 5 MPa (Fig. 27(b)), max

yyσ = 5.5 MPa at σxx = 10 MPa (Fig. 27(c)). 

As predicted by the recent 2D/3D energy analysis (He et al., 2011, 2012), the auxiliary stress 

σxx helps increase the working stress σyy.  

It is also seen from Fig. 27 that there is little reversible strain in the 2D configurations. The 

main problem for obtaining reversible martensite reorientation (leading to reversible strain) is 

the structural external friction, which will be discussed in the next sub-section.  
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Fig. 27. Magnetic-field-induced strain at different levels of constant compressive stresses (σyy and σxx). 

 

 

3.2.3. Structural external friction 

The material requirement for obtaining the non-rotating-field induced reversible martensite 

reorientation has been derived in Chapter 2 by Eq. (21): Ku / ε0  >  2σtwinning, which means that 

the maximum magneto-stress (i.e., ratio of the magnetic anisotropic energy Ku to the strain 

change ε0 due to martensite reorientation) must be larger than the material intrinsic hysteresis 

(i.e., 2σtwinning due to martensite reorientation). If the structural external friction in 2D 

configurations is also considered, the material requirement can be modified as: 

Ku / ε0  >  2σtwinning + external
hysteresisσ                                                                                        (62) 

The external stress hysteresis external
hysteresisσ  has the following two contributions:  
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(1) ,1
external
hysteresisσ  due to the friction between the horizontal loading head and the sample’s y-z 

surfaces (see the insert of Fig. 26(a)). 

This contribution has already been identified by Eq. (61) in the previous 2D compression 

tests: 

2
,1 xx

1

2external
hysteresis

s

s
σ µσ=                                                                                                     (63) 

where µ is the friction coefficient (uniform distribution of the frictional force is assumed), s1 

(= 21 2.5 mm× ) is the cross section area of x-z surface and s2 (=
21 10 mm× ) is the contact area 

of y-z surface between the sample and the horizontal loading head (with the head length of 10 

mm, see Fig. 26(a)).  

(2) ,2
external
hysteresisσ  due to the friction in the lever system (e.g., between the rotating hinge and the 

lever, the pulley and the rope (see Fig. 26(b)), the lever-supporter and the lever, etc.) 

To measure the total frictional moment My against the lever motion, additional test is done: 

in the pure lever system (Fig. 26(b)), dead load m1 are successively added until a critical 

weight mc when the free end of the lever rotates. Fig. 28 shows the results, from which mc is 

obtained (= 156 g) and the frictional moment My can be determined as:  

My = mc ·g · Llever,  with Llever length of the lever  

Then the frictional stress lever moment
frictionσ −  applied by the frictional moment My on the sample’s y-z 

contact surface (area = s2, located in the middle of the lever) is:  

2 2

1
2

/ 2
ylever moment c

friction
lever

M m g

s L s
σ − = ⋅ =  

From which the stress hysteresis (two times the frictional stress) can be obtained: 

,2
2

4external c
hysteresis

m g

s
σ =                                                                                                          (64) 
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Fig. 28. Lever movement at different weights of dead load. ‘0’ means the lever stays; ‘1’ means it 

moves.  

 

Based on Eqs. (62), (63) and (64), the material requirement for obtaining magnetic-field-

induced reversible martensite reorientation in 2D configurations is: 

2
u 0 twinning xx

1 2

/  2 2 4 cm gs
K

s s
ε σ µσ> + +                                                                         (65) 

For our 2D magneto-mechanical tests, we calculate each term in Eq. (65) as follows: 

■ From the material property (Heczko et al., 2000; Murray et al., 2000), Ku/ε0  ≈ 3 MPa. 

■ From the previous biaxial compression tests, 2σtwinning ≈ 2.4 MPa.  

■ With the known parameters, (2
xx

1 2

2 4 cm gs

s s
µσ + ) is calculated at σxx = 5 MPa: 

2
xx

1 2

1 10 156 /1000 9.8
2 4 2 0.095 5 4 4.4 MPa

1 2.5 1 10
cm gs

s s
µσ × ×+ = × × × + × =

× ×
 

where µ is assumed to be the same (= 0.095) as the friction coefficient measured in the 

previous 2D compression tests, because the clampers used in the previous tests (see Fig. 21(a)) 

and the horizontal loading head used in the current tests (see Fig. 26(a)) are made of the same 

material (brass).  
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It is seen that Eq. (65) (i.e., 3 > 2.4 + 4.4) does not stand, so there is no reversible strain in 

the 2D magneto-mechanical tests. We can try to lower the total external friction by changing 

the length of the horizontal loading head (so s2 is changed): 

12
xx xx 2

1 2 1 xxmin

2 4 4 2       at     2c c cm g m g m gss
s

s s s

µµσ σ
µσ

 
+ = = 

 
 

With σxx = 5 MPa, we have: 22
xx 2

1 2 min

2 4 3.0 MPa  at  1 4 mmcm gs
s

s s
µσ

 
+ = = × 

 
 (with length 

of the horizontal loading head: 4 mm). Still Eq. (65) (i.e., 3 > 2.4 + 3.0) does not stand.  

  

 

3.2.4. Summary and prospect 

2D magneto-mechanical tests (magnetic field with biaxial compressions) are reported. 

Preliminary results (Fig. 27) show that the working stress of FSMA increases with increasing 

the auxiliary stress.  

The material requirement (Eq. (65)) for obtaining the reversible magnetic-field-induced 

strain in the current 2D configurations is derived. It is found that the reversible strain cannot 

be obtained in the current 2D magneto-mechanical tests. Two possible solutions are proposed: 

(1) Change the 2D mechanical loading system to reduce the external friction 

The external friction of the current 2D mechanical loading system has been reduced to its 

minimum by surface polishing, graphite lubricating, Telfon sticking to some contact surfaces, 

etc. However the external friction is still too large to allow the reversible strain. So it is 

suggested to change the mechanical loading system with much smaller external friction. 

(2) Change the FSMA sample to reduce the intrinsic hysteresis 

The samples used in the experiments contain Type I twin with twinning stress σtwinning 

around 1.2 MPa. Recently, Type II twin with σtwinning around 0.1 MPa was discovered 

(Sozinov et al., 2011; Straka et al., 2010, 2011b). Samples with Type II twin will have much 
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smaller intrinsic hysteresis (2σtwinning), so at some stress levels they can satisfy the material 

requirement (Eq. (65)) for reversible strain. 

 

 

3.3. Chapter conclusion  

2D mechanical and magneto-mechanical tests are reported in this chapter. It is found that 

the twinning stress σtwinning for twin boundary motion and the transformation strain due to 

martensite reorientation are constant in all tested 2D stress states. Moreover, preliminary 

results show that the working stress of FSMA can be increased by the increase of the assistant 

stress. These experimental findings imply the possibility of using FSMA in multi-axial 

loading conditions. To predict the magneto-mechanical behaviors of FSMA under multi-axial 

loadings, a 3D constitutive model must be developed, which is the topic of the next chapter 

(Chapter 4).  
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The large strain in Ferromagnetic Shape Memory Alloys (FSMA) is due to the martensite reorientation 

driven by mechanical stresses and/or magnetic fields. Although most experiments studying the 

martensite reorientation in FSMA are under 1D condition (uniaxial stress plus a perpendicular 

magnetic field), the energy and experimental analyses of the previous chapters have shown that the 
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2D/3D configurations can improve the working stress and give much flexibility of the material’s 

applications. To predict the material’s behaviors in 3D loading conditions, a constitutive model is 

developed in this chapter, based on the thermodynamics of irreversible processes with internal 

variables. All the tetragonal martensite variants are considered in the model and the temperature effect 

is also taken into account. The model is able to describe all the behaviors of FSMA in the existing 

experiments: rotating/non-rotating magnetic-field-induced martensite reorientation, magnetic-field-

assisted super-elasticity, super-elasticity under biaxial compressions and temperature-dependence of 

martensite reorientation. The model is further used to study the nonlinear bending behaviors of FSMA 

beams and provides some basic guidelines for designing the FSMA-based bending actuators. 
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4.1.  Introduction 

In literature, most of the experiments studying the martensite reorientation in FSMA were 

conducted in a simple loading condition: a uniaxial mechanical stress plus a non-rotating 

magnetic field or a rotating magnetic field (e.g., Karaca et al., 2006; Müllner et al., 2002; 

Straka and Heczko, 2005). However, the uniaxial stress is limited to a few MPa (Heczko et al., 

2000; Murray et al., 2000), which leads to the low stress output of FSMA-based actuators. 

Recent 2D/3D energy analysis (He et al., 2011, 2012) showed that FSMA can work at high 

stress levels in 2D/3D configurations (multi-axial stresses with a magnetic field). In the recent 

experiments of biaxial compressions on FSMA (Chen et al., 2013), it is found that the 

material intrinsic hysteresis and the strain change due to martensite reorientation are constant 

under various 2D stresses. These findings imply that FSMA under multi-axial stresses still 

keeps its advantages ― low intrinsic dissipation and large reversible strain. In order to predict 

the material’s behaviors under general multi-axial magneto-mechanical loadings for the 

practical use (especially in complex structures), 3D constitutive models of FSMA martensite 

reorientation are demanded.  

 

4.1.1. Literature review of models 

 A number of constitutive models for FSMA martensite reorientation have been proposed, 

emphasizing different aspects of the material’s behaviors. Micromagnetics models are focused 

on studying the fundamental mechanism of the material’s behaviors in microscopic scale. 

James and Wuttig (1998) and DeSimone and James (2002) developed a constrained theory of 

magnetostriction, which can qualitatively predict the magnetic-field-induced strain in FSMA 

(Tickle et al., 1999). Phase-field models (e.g., Jin, 2009; Li et al., 2008, 2011; Mennerich et 

al., 2011; Zhang and Chen, 2005) have been developed by choosing different order 
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parameters, which provide elegant descriptions of the evolutions of magnetic domains and 

martensite microstructures.  

Energy models aim at understanding the origin of martensite reorientation through energy 

analysis. O’Handley (1998) studied the magnetic-field-induced martensite reorientation 

between two variants separated by a single twin boundary. The driving force for the twin 

boundary motion is identified as the magnetic energy difference between the two variants. 

Later on, Murray et al. (2001) introduced the effect of uniaxial stress by adding a mechanical 

potential. The two variants abruptly switch to each other when the difference between the 

variants’ energy (mechanical potential and magnetic energy) changes its sign. The model is 

limited by its assumption that the magnetization vector in each variant is always along the 

magnetic easy-axis (i.e., no magnetization rotation mechanism). In the model of Müllner et al. 

(2002), the magnetization vectors are free to rotate. During magnetic field rotation (without 

mechanical stress), variant switching takes place periodically when the magnetic energy 

difference between the two variants changes its sign. He et al. (2011, 2012) proposed a more 

systematic study of variant switching under multi-axial magneto-mechanical loadings, in 

which the hysteretic effect is also considered. The abrupt variant switching happens when the 

difference of variants’ energy reaches a threshold. The model offers quantitative predictions 

of the switching field/stress/angle. In the model of Likhachev and Ullakko (2000), a magnetic 

driving force on twin boundaries is proposed as the ratio between the magnetic anisotropy 

energy difference of the two variants and the strain change due to the martensite reorientation. 

The macroscopic strain is assumed to be determined by the driving force (mechanical or 

magnetic), so the stress-strain curve from the test of compression-driven martensite 

reorientation can be used to predict the strain due to the martensite reorientation driven by a 

magnetic field (magnetic driving force). Based on this approach, several models have been 
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proposed to predict the martensite reorientation between two variants under different loading 

conditions (e.g., Kiang and Tong, 2005, 2007; Straka and Heczko, 2003a).   

Statistical models, describing statistically the volume-fraction evolutions of the martensite 

variants, can predict macroscopic behaviors of the material. In the model of Glavatska et al. 

(2003), an effective stress (linear combination of mechanical stresses and magnetic-field-

induced stress) is used to represent the magneto-mechanical loadings and the probability of 

variant switching at an effective stress level is described by a statistical distribution. The 

model, considering two martensite variants, provides quantitative predictions of the material’s 

strain evolution in a magnetic field and its stress-strain behaviors under constant magnetic 

fields (Chernenko et al., 2004; Glavatska et al., 2003). Some other models are developed 

based on the assumption of thermally activated variant switching (Buchelnikov and Bosko, 

2003; Krevet et al., 2008; O’Handley et al., 2006), where the rates of variant switchings are 

related to an energy barrier. By properly setting the model parameters, these models can show 

quantitative agreement with the experimental observations.  

The approach based on thermodynamics of irreversible process is capable of describing the 

dissipative processes and the loading path effects on the material’s behaviors. The so-built 

thermodynamics models, combining the macro-scale thermodynamics and the micro-scale 

ingredients by introducing the internal state variables, can give a better quantitative prediction 

of the material’s macroscopic behaviors. Many models of this kind have been proposed for 

conventional shape memory alloys (e.g., Boyd and Lagoudas, 1996; Lexcellent et al., 2000; 

Moumni et al., 2008; Zaki and Moumni, 2007 among many others). For FSMA, Hirsinger and 

Lexcellent (2003b) first proposed a constitutive model of 1D (uniaxial stress with a 

perpendicular magnetic field) for martensite reorientation between two variants. In their 

model, the magnetization vectors of the variants are assumed to be fixed at the magnetic easy-

axis. Later on, Creton and Hirsinger (2005) and Gauthier et al. (2007) proposed models where 
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the magnetization vectors are allowed to rotate. Kiefer and Lagoudas (2005, 2007, 2009) 

developed a more systematic model for martensite reorientation between two variants. The 

magnetic domain wall motion and the magnetization rotation mechanisms are considered by 

the internal state variables. The model is good in relating the macroscopic magneto-

mechanical behaviors of the material to its micro-structural evolutions. Auricchio et al. (2011) 

proposed a 3D model with all the three martensite variants involved. An affine relation 

between the magnetization vector and the transformation strain tensor due to martensite 

reorientation is introduced. The model can give a qualitative prediction of the material’s 

behaviors under certain loading conditions. Recently, Wang and Steinmann (2012) proposed a 

model by variational approach. Their model takes into consideration the geometry effect of 

the sample and captures most of the characteristic features of the material’s behaviors in 1D 

loading conditions (uniaxial stress with/without a perpendicular magnetic field).  

Generally speaking, in literature there is no multi-axial model which is able to predict the 

material’s macroscopic behaviors in all the existing loading conditions and which is ready for 

use in 3D structural analysis. Most existing models are dealing with two martensite variants 

and limited to 2D loading conditions, because a mechanical stress or a magnetic field in the 

third direction will introduce the third martensite variant. There are models dealing with all 

the three tetragonal variants (e.g., Buchelnikov and Bosko, 2003; Gauthier, 2007; Krevet et al., 

2008), but they have been developed in 1D configuration and they are not validated in more 

complex loading conditions (e.g., rotating magnetic field, biaxial compressions, magnetic 

field with biaxial stresses). Furthermore, most of the existing models are limited to static 

loadings. In high frequency magnetic loadings, temperature variation in the FSMA samples 

can be significant due to the mechanical intrinsic dissipation and the heat from eddy current 

(Henry, 2002; Lai, 2009). And FSMA martensite reorientation is sensitive to temperature (e.g., 

Heczko and Straka, 2003; Straka et al., 2006). However, few models in literature consider the 
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temperature effect on the FSMA martensite reorientation: in Gauthier (2007), two model 

parameters are expressed as a function of temperature and only qualitative predictions are 

given.  

 

 

4.1.2. Outline of chapter 

This chapter proposes a thermodynamics model to describe the martensite reorientations 

among the three (5M) tetragonal variants in Ni-Mn-Ga single crystals in 3D magneto-

mechanical loading conditions. The model is built within the framework of generalized 

standard materials with internal constraints (Halphen and Nguyen, 1974; Moumni, 1995; 

Moumni et al., 2008). The temperature dependence of martensite reorientation is also taken 

into account. Containing a few state variables, the model can be easily incorporated into finite 

element analysis for 3D structural calculations.  

The remaining parts of the chapter are organized as follows: Section 4.2 is devoted to a 

short introduction of the theoretical framework and the detailed development of the model. In 

Section 4.3, the material’s behaviors under various loading conditions are simulated and 

compared with the experiments in literature. The temperature dependence of martensite 

reorientation is considered and simulated at the end of this section. In Section 4.4, the 3D 

constitutive model is incorporated into finite element analysis to predict the nonlinear bending 

behaviors of FSMA beams. The specimen-geometry effects and the material anisotropic 

effects are systematically studied. Finally, a general conclusion is given in Section 4.5.  

Remark for the representation of the parameters: scalar parameter x ; vector parameter x ; 

tensor parameter of order 2 x ; tensor parameter of order 4 x .  
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4.2.  Magneto-mechanical model of ferromagnetic shape memory alloys 

4.2.1. Introduction of generalized standard materials with internal constraints 

(Halphen and Nguyen, 1974; Moumni, 1995; Moumni et al., 2008) 

The thermodynamic state of a material can be defined by a set of state variables: stress σ  

(or strain ε ), absolute temperature T, irreversible internal variables α which are related to the 

dissipative mechanisms, and reversible internal variables β related to non-dissipative 

mechanisms. The material’s Gibbs free energy density g is given by: g = g(σ , T, α, β). The 

state variables are assumed to be subjected to the following internal constraints: 

km(σ , α, β) = 0               where m = 1, 2,…, M                                                          (66a) 

hn(σ , α, β) ≥ 0                where n = 1, 2,…, N                                                           (66b) 

The perfect internal constraints (Eq. (66)) can be derived from a potential Wl:  

1 1

 
M N

l m m n n
m n

W k hλ µ
= =

= − −∑ ∑                                                                                               (67) 

where λm (m = 1, 2,…, M) and µn (n = 1,2,…, N) are the Lagrange multipliers. µn, associated 

with the unilateral constraints (Eq. (66b)), must satisfy the following requirements: 

µn ≥ 0,    µnhn = 0          where n = 1, 2,…, N                                                                (68) 

Let the Lagrangian L  be: L = g + Wl . Then the generalized forces associated with the state 

variables can be derived as: 

1 1

M N
m n

m n
m n

k hgε λ µ
σ σ σ σ= =

∂ ∂∂ ∂= − = − + +
∂ ∂ ∂ ∂∑ ∑
L

                                                                 (69a) 

1 1

M N
m n

m n
m n

k hg
A λ µ

α α α α= =

∂ ∂∂ ∂= − = − + +
∂ ∂ ∂ ∂∑ ∑
L

                                                                (69b) 

1 1

M N
m n

m n
m n

k hg
B λ µ

β β β β= =

∂ ∂∂ ∂= − = − + +
∂ ∂ ∂ ∂∑ ∑
L

                                               

                 (69c) 

Then the intrinsic dissipation can be expressed as: 
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D A α= ⋅
i

+ B β⋅
i

                                                                                                           (70) 

where A and B are the thermodynamic forces associated with the internal state variables α and 

β, respectively. B must be null because β is related to non-dissipative mechanisms. Therefore, 

the intrinsic dissipation (Eq. (70)) can be reduced to: 

D A α= ⋅
i

                                                                                                                      (71) 

For standard generalized materials (Halphen and Nguyen, 1974), there exists a convex 

non-negative function ( , )α α
i

D , so-called pseudo-dissipation potential. The thermodynamic 

forces A belongs to the sub-gradient of D  with respect to α
i

: 

A
α∂

∈∂ iD                                                                                                                     (72) 

For a pseudo-dissipation potential D whose minimum (Dmin = 0) is at 0α =
i

, the 

requirement of non-negative intrinsic dissipation (Eq. (71)) is automatically satisfied. The 

directional derivatives of D  (Eq. (72)) define a yield surface limiting a convex domain of 

admissible forces. If A is inside the domain, α
i

 is null; if A is on the yield surface, the 

normality rule holds: α
i

 is proportional to the external normal of the domain. 

 

 

4.2.2. State variables and internal constraints  

The absolute temperature T, the Cauchy stress tensor σ
 
and the internal magnetic field 

strength vector H are the state variables. There are three martensite variants in 5M Ni-Mn-Ga 

single crystals (see Fig. 1 in Chapter 1), and their volume fractions are respectively denoted 

by z1, z2, z3, which are chosen as the internal state variables. The internal variables must 

satisfy the following physical constraints: 
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■ The material is in the martensitic phase. So the sum of the volume fractions of all the 

martensite variants must be equal to 1 (100%). 

z1 + z2 + z3 – 1 = 0                                                                                                        (73) 

■ Martensite variant volume fractions (z1, z2, z3) cannot be negative: 

zi ≥ 0      where i = 1, 2, 3                                                                                             (74) 

The constraints are assumed to be perfect. Therefore, they can be derived from a potential 

Wl defined as: 

Wl = −λ(z1 + z2 + z3 – 1) – µ1z1 – µ2z2 – µ3z3                                                                 (75) 

where λ, µ1, µ2 and µ3 are Lagrange multipliers. By Eq. (68), µ1, µ2 and µ3 must obey:  

µi ≥ 0,   µizi = 0          where i = 1, 2, 3                                                                         (76)                                                                                               

 

 

4.2.3. Formulation of Gibbs free energy density 

The Gibbs free energy g has four contributions: thermal energy gthe, mechanical energy 

gmec, magnetic energy gmag and interaction energy gint due to the incompatibility among the 

martensite variants.  

the mec mag intg g g g g= + + +                                                                                            (77) 

  

4.2.3.1. Thermal energy 

The thermal energy gthe is expressed as: 

0
0

( ) ( ln( ))the p

T
g T C T T T

T
ρ= − −                                                                                       (78) 

where ρ is the mass density; Cp is  the specific heat capacity, which is assumed to be the same 

for all martensite variants; T0 is a reference temperature, e.g., it can be the lowest temperature 
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where the magnetic-field-induced strain can be observed. The choice of T0 has no influence 

on the constitutive equations.  

 

4.2.3.2. Mechanical energy 

The mechanical energy gmec is composed of the elastic energy gelas and the combination of 

the mechanical potentials 1 2 3
- - -,   and  v v v

me po me po me pog g g  of the variants (He et al., 2011, 2012):  

1 2 3
1 2 3 1 - 2 - 3 -( , , , ) ( ) ( ) ( ) ( )v v v

mec elas me po me po me pog z z z g z g z g z gσ σ σ σ σ= + + +                           (79) 

■ Elastic energy 

The Gibbs free energy related to the elastic energy is: 

1
( ) : :

2elasg Sσ σ σ= −                                                                                                   (80) 

where S is the elastic compliance tensor of the martensite.   

■ Mechanical potentials  

Based on the martensitic transformation from the cubic austenitic phase to the tetragonal 

martensitic phase, the transformation strain tensors 
1

U , 
2

U and 
3

U  of the variants can be 

obtained as: 

1 x x y y z zc a aU e e e e e eε ε ε= − ⊗ + ⊗ + ⊗                                   for variant 1               (81a) 

2 x x y y z za c aU e e e e e eε ε ε= ⊗ − ⊗ + ⊗                                    for variant 2               (81b)                  

3 x x y y z za a cU e e e e e eε ε ε= ⊗ + ⊗ − ⊗                                     for variant 3               (81c)                                      

where ex, ey and ez are the unit vectors respectively along x-, y- and z-coordinate of the parent 

austenite lattice;  εa and εc are expressed as: 

0 0( ) /a a a aε = −                                                                                                          (82a) 

0 0( ) /c a c aε = −                                                                                                           (82b) 
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a0 is the length of the cubic austenite unit cell; a and c are respectively the lengths of the long 

and short axes of the tetragonal martensite unit cell (see Fig. 1 in Chapter 1). The mechanical 

potentials 1 2 3
- - -,   and  v v v

me po me po me pog g g  of the variants are: 

1
- 1

( ) : ( )v
me po xx c a yy zzg Uσ σ σ ε ε σ σ= − = − +                                for variant 1             (83a) 

2
- 2

( ) : ( )v
me po yy c a zz xxg Uσ σ σ ε ε σ σ= − = − +                               for variant 2              (83b) 

3
- 3

( ) : ( )v
me po zz c a xx yyg Uσ σ σ ε ε σ σ= − = − +                               for variant 3              (83c) 

From Eqs. (79), (80) and (83), the Gibbs free energy density of the mechanical part is: 

( ) ( )
( )

1 2 3 1 2

3

1
( , , , ) : : ( ) ( )

2

                              ( )

mec xx c a yy zz yy c a zz xx

zz c a xx yy

g z z z S z z

z

σ σ σ σ ε ε σ σ σ ε ε σ σ

σ ε ε σ σ

= − + − + + − +

+ − +
         (84) 

 

4.2.3.3. Magnetic energy 

The magnetic energy density Emag stored in the material is (O’Handley, 2000):  

00
( )magE H dmµ= ⋅∫

M

M                                                                                           (85) 

where µ0 is the vacuum permeability; M  is the magnetization vector. The dual-energy (Gibbs 

free energy part gmag related to the magnetic energy) is obtained by the Legendre 

transformation: 

00
( )

H

magg H d hµ= − ⋅∫ M                                                                                           (86) 

The magnetization vector M  is an extensive variable (Maugin, 1999). At a generic material 

point, M  is the linear combination of the magnetizations M1, M2 and M3  of the variants: 

   M  = z1 M1 + z2 M2 + z3 M3                                                                                    (87) 

With Eq. (87), Eq. (86) can be rewritten as: 

( ) ( )1 2 3 1 0 2 0 3 01 2 30 0 0
, , ,

H H H

magg H z z z z d h z d h z d hµ µ µ= − ⋅ + ⋅ + ⋅∫ ∫ ∫M M M        (88) 



105 
 

Let H be the magnitude of the magnetic field strength, M1, M2 and M3 be the magnetization 

components along the field for variant 1, 2 and 3, respectively. For the magnetization process 

(i.e., magnetize the material by the increase of the magnitude of a magnetic field in a fixed 

direction) of each variant i (i = 1, 2, 3), we have:  

0 00 0
       

H H

ii d h M dhµ µ⋅ =∫ ∫M     where i = 1, 2, 3                                                  (89) 

The magnetization curve of each variant can be linearized as shown in Fig. 29, where the 

slope ai (i = 1, 2, 3) of the approximated line is the magnetic susceptibility of variant i. Then 

the magnetization M1, M2 and M3 of the variants can be expressed as: 

1
1

1

1

   (0 )

( )

        ( )

s

s
s

M
a H H

a
M H

M
M H

a

 ≤ <
= 
 ≥


                                                 for variant 1            (90a) 

2
2

2

2

   (0 )

( )

        ( )

s

s
s

M
a H H

a
M H

M
M H

a

 ≤ <
= 
 ≥


                                                for variant 2            (90b)              

3
3

3

3

   (0 )

( )

        ( )

s

s
s

M
a H H

a
M H

M
M H

a

 ≤ <
= 
 ≥


                                                 for variant 3            (90c)             

where Ms is the saturation magnetization. The magnetic susceptibility ai (i = 1, 2, 3) reflects 

the overall effects of the magnetic-domain-wall motions and local magnetization rotations on 

the global magnetization process (Likhachev and Ullakko, 2000). The piecewise Eq. (90) can 

be rewritten as: 

1 1 1
1

( ) ( )s
s

M
M H a H H M a H

a
= + − −                                         for variant 1             (91a) 

2 2 2
2

( ) ( )s
s

M
M H a H H M a H

a
= + − −                                        for variant 2             (91b) 
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3 3 3
3

( ) ( )s
s

M
M H a H H M a H

a
= + − −                                        for variant 3             (91c) 

where x  = {0, if x < 0 ; 1, if x ≥ 0}.  

 

 

Fig. 29. Linear approximation (dashed line) of the magnetization curve (solid line) for martensite 

variant i (i = 1, 2, 3). The slope ai of the approximated line is the magnetic susceptibility of variant i; 

Ms is the saturation magnetization.  

 

With Eqs. (89) and (91), the magnetic energy (Eq. (88)) can be calculated as: 

( )
23

2 20 0 0
1 2 3 0

1

, , , ( )
2 2 2

i s i s
mag i s

i i i

a M a M
g H z z z z H H HM H

a a

µ µ µµ
=

  
= − + − − −   

  
∑                      (92) 

  

4.2.3.4. Interaction energy 

The proposed expression of the interaction energy gint is similar to the energy contribution 

due to the linear kinematic hardening of an elasto-plastic material: 

2 2 2
1 2 3 1 2 3

1
( , , ) ( )

2intg z z z k z z z= + +                                                                                  (93) 

where k  is the interaction parameter, whose detailed physical interpretation will be given in 

sub-section 4.2.6.  
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4.2.3.5. Expression of Gibbs free energy 

With Eqs. (78), (84), (92) and (93), the final expression of the Gibbs free energy (Eq. (77)) 

is: 

1 2 3

2
2 20 1 0 1 0

1 0
1 1

20 2
2

2

1
( , , , , , ) : :

2

                                 ( ) ( ( ))
2 2 2

                                 ( ) ( (
2

s s
xx c a yy zz s

s
yy c a zz xx

g T H z z z S

a M a M
z H H M H H

a a

a M
z H H

a

σ σ σ

µ µ µσ ε ε σ σ µ

µσ ε ε σ σ

= −

 
− − + + + + − − −  

 

− − + + + + −
2

20 2 0
0

2

2
2 20 3 0 3 0

3 0
3 3

2 2 2
1 2 3 0

))
2 2

                                 ( ) ( ( ))
2 2 2

1
                                  ( ) ln(

2

s
s

s s
zz c a xx yy s

p

a M
M H H

a

a M a M
z H H M H H

a a

T
k z z z C T T T

µ µµ

µ µ µσ ε ε σ σ µ

ρ

 
− −  

 

 
− − + + + + − − −  

 

+ + + + − −
0

)
T

 
 
 

   (94) 

 

4.2.3.6. Expression of Lagrangian 

The Lagrangian L of the material is composed of the Gibbs free energy density (Eq. (94)) 

and the potential related to the internal constraints (Eq. (75)): 

1 2 3

2
2 20 1 0 1 0

1 0
1 1

20 2
2

2

1
( , , , , , ) : :

2

                                 ( ) ( ( ))
2 2 2

                                 ( ) ( (
2

s s
xx c a yy zz s

s
yy c a zz xx

L T H z z z S

a M a M
z H H M H H

a a

a M
z H H

a

σ σ σ

µ µ µσ ε ε σ σ µ

µσ ε ε σ σ

= −

 
− − + + + + − − −  

 

− − + + + + −
2

20 2 0
0

2

2
2 20 3 0 3 0

3 0
3 3

2 2 2
1 2 3 0

))
2 2

                                 ( ) ( ( ))
2 2 2

1
                                  ( ) ln(

2

s
s

s s
zz c a xx yy s

p

a M
M H H

a

a M a M
z H H M H H

a a

T
k z z z C T T T

µ µµ

µ µ µσ ε ε σ σ µ

ρ

 
− −  

 

 
− − + + + + − − −  

 

+ + + + − − 1 2 3
0

1 1 2 2 3 3( 1 –) ) – –
T

z z z z z zλ µ µ µ
 


− + −  +



    (95) 

 

 

4.2.4. State equations 

From the Lagrangian (Eq. (95)), we obtain the following state equations: 

■ Stress−strain relation 
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( )

( )
( )

1 2 3 1

2

3

* ( , , , ) :

                                         

                                         

x x y y z zc a a

x x y y z za c a

x x y y z za a c

L
z z z S z e e e e e e

z e e e e e e

z e e e e e e

ε σ σ ε ε ε
σ

ε ε ε

ε ε ε

∂= − = + − ⊗ + ⊗ + ⊗
∂

+ ⊗ − ⊗ + ⊗

+ ⊗ + ⊗ − ⊗
                            

(96) 

The martensitic phase is assumed to be elastically isotropic with Young’s modulus E and 

Poisson’s ratio ν. Then Eq. (96) can be rewritten as: 

( )
( )
( )

1 2 3

1

2

3

1
*( , , , ) (tr )

                         

                         

                         

x x y y z zc a a

x x y y z za c a

x x y y z za a c

z z z I
E E

z e e e e e e

z e e e e e e

z e e e e e e

υ υε σ σ σ

ε ε ε

ε ε ε

ε ε ε

+= −

+ − ⊗ + ⊗ + ⊗

+ ⊗ − ⊗ + ⊗

+ ⊗ + ⊗ − ⊗

                                                 (97)   

where (trσ ) is the trace of the stress tensor σ ; I  is the identity tensor. Let (0) (0) (0)
1 2 3,   and  z z z  

denote the initial volume fractions of the martensite variants. Then the initial strain (0)*ε  is:  

( )
( )

(0)(0) (0) (0) (0) (0)
1 2 3 1

(0)
2

(0)
3

* ( 0, , , )

                                               

                                               

x x y y z zc a a

x x y y z za c a

x xa a

z z z z e e e e e e

z e e e e e e

z e e

ε σ ε ε ε

ε ε ε

ε ε

= = − ⊗ + ⊗ + ⊗

+ ⊗ − ⊗ + ⊗

+ ⊗ +( )y y z zce e e eε⊗ − ⊗

                             (98) 

In the small strain approximation, the strain change ε  during magneto-mechanical loadings 

can be calculated from Eqs. (97) and (98) as:  

( )( )
( )( )

1

2

(0)
1 2 3

(0)
1

(0)
2

1
( , , , ) * * (tr )

                                             

                                             

        

x x y y z zc a a

x x y y z za c a

z z z I
E E

z z e e e e e e

z z e e e e e e

υ υε σ ε ε σ σ

ε ε ε

ε ε ε

+= − = −

+ − − ⊗ + ⊗ + ⊗

+ − ⊗ − ⊗ + ⊗

( )( )(0)
3 3                                     x x y y z za a cz z e e e e e eε ε ε+ − ⊗ + ⊗ − ⊗

                   (99) 

Let z12, z23 and z31 denote the volume-fraction transformations between the variants (see 

Fig. 30). Then the current volume fractions (z1, z2, z3) are related to the initial volume 

fractions ( (0) (0) (0)
1 2 3,  ,  z z z ) by: 

(0)
1 1 12 31z z z z= − +                                                          for variant 1                        (100a) 
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(0)
2 2 23 12z z z z= − +                                                         for variant 2                        (100b)    

(0)
3 3 31 23z z z z= − +                                                         for variant 3                         (100c)         

With Eq. (100), the strain tensor ε  (Eq. (99)) can be expressed as: 

( )
( ) ( )

12 23 31 12 0 0

23 0 0 31 0 0

1
( , , , ) (tr )

                       

x x y y

y y z z z z x x

z z z I z e e e e
E E

z e e e e z e e e e

υ υε σ σ σ ε ε

ε ε ε ε

+= − + ⊗ − ⊗

+ ⊗ − ⊗ + ⊗ − ⊗

                            

(101)  

 
where ε0 is expressed as: 

 
0

0
a c

a c

a
ε ε ε −= + =

                                                                                                    (102) 

ε0 is the strain change due to martensite reorientation (Karaca et al. 2006). The mathematical 

expressions of εa and εc are given in Eq. (82), and the lattices lengths a0, a and c are illustrated 

by Fig. 1 in Chapter 1.  

 

 

 

Fig. 30. Martensite reorientation among three variants (V1, V2, V3). z12 (z23 or z31) denotes volume-

fraction transformation from V1 (V2 or V3) to V2 (V3 or V1). 

 

■ Magnetization−magnetic field relation 

3

1 2 3
10

1
( , , , ) ( )s

i i s i
i i

ML
M H z z z z a H H M a H

H aµ =

 ∂= − = + − −  ∂  
∑                                  (103) 

 

■ Thermodynamic forces A1, A2 and A3 respectively related to the volume fractions z1, z2, z3 
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The internal constraints (Eqs. (73) and (74)) only depend on the dissipative internal state 

variables (z1, z2, z3), so the related thermodynamic forces (A1, A2, A3) can be directly obtained 

from the Gibbs free energy (Moumni, 1995; Moumni et al., 2008):    

1 1 1
1

2
2 20 1 0 1 0

0
1 1

( , , ) ( )

                                   ( ( ))
2 2 2

xx c a yy zz

s s
s

g
A H z kz

z

a M a M
H H M H H

a a

σ σ ε ε σ σ

µ µ µµ

∂= − = − − + +
∂

+ + − − −

                      (104a)  

2 2 2
2

2
2 20 2 0 2 0

0
2 2

( , , ) ( )

                                    ( ( ))
2 2 2

yy c a zz xx

s s
s

g
A H z kz

z

a M a M
H H M H H

a a

σ σ ε ε σ σ

µ µ µµ

∂= − = − − + +
∂

+ + − − −

                     (104b) 

3 3 3
3

2
2 20 3 0 3 0

0
3 3

( , , ) ( )

                                   ( ( ))
2 2 2

zz c a xx yy

s s
s

g
A H z kz

z

a M a M
H H M H H

a a

σ σ ε ε σ σ

µ µ µµ

∂= − = − − + +
∂

+ + − − −

                       (104c) 

 

4.2.5. Evolution laws of internal state variables 

The martensite reorientation is assumed to be the only source of energy dissipation. So the 

intrinsic dissipation D can be expressed as: 

1 1 2 2 3 3D A z A z A z= + +
i i i

                                                                                               (105) 

where 1z
i

, 2z
i

 and 3z
i

are the rates of the volume fractions. Let 12

i

z , 23

i

z  and 31

i

z denote the rates 

of the volume-fraction transformations (see Fig. 30), then 1

i

z , 2

i

z  and 3

i

z can be expressed as: 

1 12 31= − +
i i i

z z z                                                                                                             (106a) 

2 23 12= − +
i i i

z z z                                                                                                           (106b) 

3 31 23= − +
i i i

z z z                                                                                                            (106c) 

In Eq. (105), replace1

i

z , 2

i

z  and 3

i

z with Eq. (106) and we obtain: 
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( ) ( ) ( )1 2 12 2 3 23 3 1 31D A A z A A z A A z= − + + − + + − +
i i i

                                                     (107) 

We define A12, A23 and A31 as the thermodynamic forces related to the martensite 

reorientations respectively between variants (1, 2), (2, 3) and (3, 1):  

12 1 2 1 2 0 12( ) ( ) ( )xx yyA A A k z z E Hε σ σ= − + = − + − +                                                  (108a) 

23 2 3 2 3 0 23( ) ( ) ( )yy zzA A A k z z E Hε σ σ= − + = − + − +                                                (108b) 

31 3 1 3 1 0 31( ) ( ) ( )zz xxA A A k z z E Hε σ σ= − + = − + − +                                                  (108c) 

To obtain Eq. (108), Eq. (104) has been used for the expressions of A1, A2 and A3. In Eq. (108), 

E12(H), E23(H) and E31(H) are the magnetic energy differences respectively between variants 

(1, 2), (2, 3) and (3, 1): 

2
2 20 1 0 1 0

12 0
1 1

2
2 20 2 0 2 0

0
2 2

( ) ( ( ))
2 2 2

              ( ( ))
2 2 2

s s
s

s s
s

a M a M
E H H H M H H

a a

a M a M
H H M H H

a a

µ µ µµ

µ µ µµ

= − + − − −

+ + − − −
                                  (109a) 

2
2 20 2 0 2 0

23 0
2 2

2
2 20 3 0 3 0

0
3 3

( ) ( ( ))
2 2 2

               ( ( ))
2 2 2

s s
s

s s
s

a M a M
E H H H M H H

a a

a M a M
H H M H H

a a

µ µ µµ

µ µ µµ

= − + − − −

+ + − − −
                                 (109b) 

2
2 20 3 0 3 0

31 0
3 3

2
2 20 1 0 1 0

0
1 1

( ) ( ( ))
2 2 2

               ( ( ))
2 2 2

s s
s

s s
s

a M a M
E H H H M H H

a a

a M a M
H H M H H

a a

µ µ µµ

µ µ µµ

= − + − − −

+ + − − −
                                 (109c) 

With Eq. (108), the intrinsic dissipation D (Eq. (107)) can be rewritten as: 

12 12 23 23 31 31= + +
i i i

D A z A z A z                                                                                        (110) 

The martensite reorientation needs to overcome some internal frictional force, known as 

twinning stress σtw (Heczko, 2005; Heczko et al., 2006; Likhachev and Ullakko, 2000). So the 

pseudo-dissipation potential D  of the martensite reorientations among three variants can be 

proposed as: 
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0 12 23 31(| | | | | |)tw z z zσ ε= + +
i i i

D                                                                                   (111) 

where |x| denotes the absolute value of x; ε0, the strain change due to martensite reorientation, 

is mathematically expressed by Eq. (102). By Eq. (72), the directional derivatives of D  define 

the yield surfaces for the thermodynamic forces A12, A23 and A31:  

12
12 12 0 | | tw

z
A A σ ε∈∂ ⇒ ≤i D     

          
                                                                               (112a) 

23
23 23 0 | | tw

z
A A σ ε∈∂ ⇒ ≤i D     

          
                                                                              (112b) 

31
31 31 0 | | tw

z
A A σ ε∈∂ ⇒ ≤i D     

          
                                                                               (112c)

   

Based on Eq. (112), the yield functions associated with the martensite reorientations 

between variants (1, 2), (2, 3) and (3, 1) are proposed as: 

0| |          where ( , ) (1,2),  (2,3),  (3,1)ij ij twF A i jσ ε= − =     
 

■ If ijF < 0, no martensite reorientation between variant i and j. So 0ijz =
i

. 

■ If ijF = 0 and ijF
i

< 0, no martensite reorientation between i and j. 0ijz =
i

. 

■ If ijF = 0 (i.e., 0| |ij twA σ ε= ) and ijF
i

= 0 (i.e., 0ijA =
i

), martensite reorientation between i and 

j exists. With Eqs. (106) and (108), ijz
i

is given by the consistency condition of ijF
i

= 0: 

(i, j) = (1, 2): 1212 0

1
( ( ) ( ))

2
xx yyz E H

k
ε σ σ= − +

i i i i

      martensite reorientation between V1, V2 (113a) 

(i, j) = (2, 3): 2323 0

1
( ( ) ( ))

2
yy zzz E H

k
ε σ σ= − +

i i i i

     martensite reorientation between V2, V3 (113b) 

(i, j) = (3, 1): 3131 0

1
( ( ) ( ))

2
zz xxz E H

k
ε σ σ= − +

i i i i

     martensite reorientation between V3, V1 (113c) 

 

Summary 

The complete model consists of the following constitutive relations: 
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■ Stress−strain relation 

( )
( ) ( )

12 23 31 12 0 0

23 0 0 31 0 0

1
( , , , ) (tr )

                       

x x y y

y y z z z z x x

z z z I z e e e e
E E

z e e e e z e e e e

υ υε σ σ σ ε ε

ε ε ε ε

+= − + ⊗ − ⊗

+ ⊗ − ⊗ + ⊗ − ⊗

 
■ Magnetization−magnetic field relation 

3

1 2 3
1

( , , , ) ( )s
i i s i

i i

M
M H z z z z a H H M a H

a=

 
= + − −  

 
∑  

■ Thermodynamic driving forces for martensite reorientations 

12 1 2 0 12( ) ( ) ( )xx yyA k z z E Hε σ σ= − + − +                                                    

23 2 3 0 23( ) ( ) ( )yy zzA k z z E Hε σ σ= − + − +                                                   
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■ Evolution laws for the volume fractions of the variants 

When |A12| = σtwε0 and 1212 12 0

1
0,   ( ( ) ( ))

2
xx yyA z E H

k
ε σ σ= = − +

i i i i i

; 

When |A23| = σtwε0 and 2323 23 0

1
0,   ( ( ) ( ))

2
yy zzA z E H

k
ε σ σ= = − +

i i i i i

; 

When |A31| = σtwε0 and 3131 31 0

1
0,   ( ( ) ( ))

2
zz xxA z E H

k
ε σ σ= = − +

i i i i i

. 
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1 12 31 2 23 12 3 31 23,   ,   z z z z z z z z z= − + = − + = − +
i i i i i i i i i

                                                                                                                                               

            z1 ≥ 0,  z2 ≥ 0,  z3 ≥ 0,  z1+ z2 + z3 = 1 

                      

 

4.2.6. Identification of model parameters  

The involved parameters in the model are listed below: 

■ E: Young’s modulus. 

■ ν: Poisson’s ratio which is assumed to be 0.3 (ν for commonly used metals is around 1/3).  

■ ε0: strain change due to martensite reorientation.  

■ k: interaction parameter representing the incompatibility among the martensite variants. 

■ σtw: twinning stress (considered as the internal frictional force or threshold driving force for 

martensite reorientation).   

■ Ms: saturation magnetization. 

■ a1, a2, a3: magnetic susceptibilities of the three martensite variants. 

Three basic experiments are required to completely determine the model parameters above: 

uniaxial compression test, magnetization tests along magnetic easy- and hard-axis.  

 

4.2.6.1.  Uniaxial compression test 

This experiment is for identifying the Young’s modulus E, the strain change ε0 due to 

martensite reorientation, the interaction parameter k and the twinning stress σtw. The material 

in the initial state of V1 (with short-axis along x-coordinate) is under a uniaxial compressive 

stress σyy along y-coordinate (see Fig. 31(a)). Martensite reorientation from V1 to V2 (with 

short-axis along y-coordinate) is induced and the resulted stress-strain curve (σyy−εyy) is shown 

in Fig. 31(b). 
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Fig. 31. (a) Martensite reorientation (from V1 to V2) induced by compressive stress σyy. (b) Stress-

strain curve (σyy−εyy) of martensite reorientation under compression. Young’s modulus E, strain change 

ε0 due to martensite reorientation and interaction parameter k are illustrated on the figure. σs and σf are 

respectively the start and finish stresses for the martensite reorientation. 

 

By linear approximation of the strain-stress curve before martensite reorientation, the 

Young’s modulus E is obtained (see Fig. 31(b)). Furthermore, the strain change ε0 due to 

martensite reorientation can be identified as the absolute value of the residual strain after 

unloading (Fig. 31(b)). By the evolution laws introduced in sub-section 4.2.5, during 

martensite reorientation from V1 to V2, the associated thermodynamic force A12 (Eq. (108a)) 

must be equal to σtwε0. Let σs and σf respectively be the start and finish stresses for the 

martensite reorientation (see Fig. 31(b)). Then we have: 

■ At the beginning of martensite reorientation, σ = σs, z1 = 1, z2 = 0:  

12 0 0s twA k σ ε σ ε= − =                                                                                                  (114) 

■ At the end, σ = σf, z1 = 0, z2 = 1:  

12 0 0f twA k σ ε σ ε= − − =                                                                                               (115) 

By solving Eqs. (114) and (115), we obtain: 

0

1
( )

2 s fk ε σ σ= −                                                                                                          (116)  

1
( )

2tw f sσ σ σ= − +                                                                                                        (117) 
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Equation (116) shows that the interaction parameter k represents an area bounded by the 

strain-stress curve (see the shaded area in Fig. 31(b)). If the martensite variants are compatible 

(σs = σf), then the area |ε0(σs−σf)|/2 is null (i.e., k = 0). If the two variants are incompatible (σs 

≠ σf), then the area is not zero. Therefore, such area (= k) can be viewed as the energy needed 

to overcome the incompatibility of the variants during martensite reorientation.  

 

 

4.2.6.2. Magnetization tests 

From the experiments in this sub-section, the saturation magnetization Ms can be directly 

obtained. Two other parameters (i.e., the magnetic anisotropic energy coefficient Ku and the 

magnetic susceptibility a(0) for the magnetization along the magnetic easy-axis) are also 

obtained in order to calculate the magnetic susceptibilities a1, a2, a3 of the variants.  

 

 

 
 

Fig. 32. (a) Magnetization test along magnetic easy-axis. (b) Magnetization test along magnetic hard-

axis. A constant compressive stress σyy of large value is simultaneously applied to prevent martensite 

reorientation. 

 

■ Magnetization along magnetic easy-axis 

The material in the state of V1 (with magnetic easy-axis along x-coordinate) is put in a 

magnetic field Hx along x-coordinate (Fig. 32(a)). By linearization of the magnetization curve, 
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we can determine the saturation magnetization Ms , and the magnetic susceptibility a(0) for 

the magnetization along the magnetic easy-axis (see Fig. 33).   

 

■ Magnetization along magnetic hard-axis  

The material in the state of V2 (with magnetic easy-axis along y-coordinate) is put in a 

magnetic field Hx perpendicular to the magnetic easy-axis of V2. To prevent martensite 

reorientation during the experiment, a constant compressive stress σyy (~10 MPa) is applied 

along y-coordinate (Fig. 32(b)). Following the same procedures as the previous experiment, 

the magnetization curve for the magnetization process along the magnetic hard-axis is 

obtained. 

 

■ Calculation of a1, a2, a3 

The uniaxial magneto-crystalline anisotropy energy density ua for Ni-Mn-Ga 5M 

martensite can be expressed as (O’Handley et al., 2000):  

2( ) sina uu Kθ θ=                                                                                                         (118) 

where Ku is the coefficient of magneto-crystalline anisotropy energy; θ is the equilibrium 

angle between the magnetic easy-axis of the martensite variant and its magnetization vector. 

ua(θ) can be determined by the area between the magnetization curve along the easy-axis and 

that along the direction deviating by an angle θ from the easy-axis (see the shaded area in Fig. 

33). For the magnetization along the magnetic hard-axis (θ = π/2), we have ua = Ku. So Ku can 

be directly obtained by the magnetization curves from the previous two magnetization tests.  

From Fig. 33, ua(θ) can be calculated as: 

2
0

1 1 1
( )

2 ( ) (0)a su M
a a

θ µ
θ

 
= − 

 
                                                                                  (119) 
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where a(0) and a(θ) are respectively the magnetic susceptibilities of the magnetization along 

the magnetic easy-axis (θ = 0°) and that along the direction deviating by an angle θ from the 

easy-axis. With Eqs. (118) and (119), we can obtain the following expression of a(θ): 

12

2
0

2 (sin )1
( )

(0)
u

s

K
a

a M

θθ
µ

−
 

= + 
 

                                                                                   (120) 

The magnetic easy-axes for variants 1, 2 and 3 are respectively the x-, y- and z-coordinate.  

Let θ1, θ2 and θ3 be the angles between the magnetic field H and the x-, y-, z-coordinate, 

respectively. By Eq. (120), the magnetic susceptibilities of the variants are: 

12
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                        for variant 1                      (121a)    
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                       for variant 2                     (121b) 
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                       for variant 3                      (121c) 

 

 

Fig. 33. Magnetization curves (after linear approximation) of the magnetization along the magnetic 

easy-axis (dashed line) and that along the direction deviating from the easy-axis by an angle θ (solid 

line). The uniaxial magneto-crystalline anisotropy energy ua(θ) can be determined by the area between 

the two magnetization curves. The saturation magnetization Ms and the magnetic susceptibilities a(0) 

and a(θ) are also illustrated.  
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4.3.  Numerical simulations and model validations 

Application of the constitutive model in simulating the material’s behaviors (using Matlab) 

is reported in this section, while the structural simulations (using the finite element code 

Cast3M: http://www-cast3m.cea.fr) are reported in the next section (i.e., Section 4.4). The 

algorithm of the Matlab program is summarized in Table 2. Table 3 lists the values of the 

model parameters used for the simulations. Five kinds of the material’s behaviors are 

simulated and compared with experiments in the following sub-sections: (1) Martensite 

reorientation induced by a non-rotating magnetic field (the direction of the magnetic field is 

fixed while its magnitude is changing); (2) Martensite reorientation induced by a rotating 

magnetic field (the magnitude of the magnetic field is fixed while its direction is changing); (3) 

Super-elasticity under biaxial compressions; (4) Super-elasticity under magneto-mechanical 

loadings (compressive stress plus a perpendicular magnetic field); (5) Thermo-magneto-

mechanical behaviors of FSMA. For convenience, values of compressive stresses are positive 

in this section.  

 

Table 2. Algorithm of simulation on material’s behaviors. 
__________________________________________________________________________ 

Initialization of model parameters 

Initialization of material state 

Input: σ , H 

Output: ε , M 

Start:  

    Equally divide the magneto-mechanical loading path into N intervals ( σ∆ , H∆ ) 

    Initialize the counter: n = 1 

While n < N + 1: 
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1. ( ) ( 1) ( ) ( 1), n n n nH H Hσ σ σ− −= + ∆ = + ∆  

2. Calculate ai
(n)

   (i = 1, 2, 3)  by Eq. (121).  

3. Calculate the thermodynamic forces Aij
(n)

  ((i, j)=(1,2), (2,3), (3,1)) by Eqs. (108) and (109). 

4. Detection of martensite reorientations: 

           ■ If Aij
(n) > σtwε0,  zi

(n-1) > 0 and zj
(n-1) < 1,  then martensite reorientation between variant i and j. 

           ■ If Aij
(n)

 < −σtwε0, zi
(n-1) < 1 and  zj

(n-1) > 0,  then martensite reorientation between variant i and j. 

5. If there is martensite reorientation between variant i and j, then calculate the volume fraction                                        

transformation ∆zij by Eq. (113); if not, ∆zij = 0.  

6. Update the volume fractions 

z12
(n) = z12

(n-1) + ∆z12 

z23
(n) = z23

(n-1) + ∆z23 

z31
(n) = z31

(n-1) + ∆z31 

z1
(n) = z1

(n-1)
 − ∆z12 + ∆z31 

             z2
(n) = z2

(n-1)
 – ∆z23 + ∆z12 

z3
(n) = z3

(n-1)
 – ∆z31 + ∆z23 

7. Update the strain 
( )nε  and the magnetization M (n) by Eqs. (101) and (103). 

8.  Increase the counter: n+1. 

End. 
___________________________________________________________________________ 

 

Table 3. Parameter values from the uniaxial compression test and the magnetization tests in (Heczko, 

2005). 

Model parameters 

E  (MPa) 100,000 Ms  (A/m) 500,000 

ε0 (%) 5.8 a(0)  5 

k  (J/m3) 10,900 Ku  (J/m3) 170,000 

σtw  (MPa) 1.2   
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4.3.1. Martensite reorientation induced by a non-rotating magnetic field 

Large reversible strain and high frequency response make FSMA a promising candidate for 

actuators. Actually, many simple actuators based on FSMA have already been proposed in 

literature (e.g., Gauthier et al., 2006; Suorsa et al., 2002; Tellinen et al., etc.). This sub-section 

is devoted to simulate the material’s behavior as an actuator driven by a non-rotating 

magnetic field.  

 

4.3.1.1. Non-rotating magnetic field with a uniaxial stress 

The material in the initial state of V2 is under a magnetic field Hx (along x-coordinate) and 

a constant compressive stress σyy (along y-coordinate) (see Fig. 34). Magnetic loading (Hx 

increases) can induce the martensite reorientation from V2 to V1 (with magnetic easy-axis 

along the field), while during unloading (Hx decreases to 0), reverse martensite reorientation 

from V1 to V2 can be induced by the compressive stress. The magneto-mechanical responses 

of the material from the experiments (Heczko, 2005) and simulations are compared in Fig. 35.  

 

 

Fig. 34. FSMA used as an actuator driven by a non-rotating magnetic field (1D case: uniaxial stress). 

During magnetic loading-unloading (the magnitude of the field increases and decreases), martensite 

reorientations between V2 and V1 are induced, which lead to the reversible strain of FSMA actuator.   
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Figures 35(a) and 35(b) are, respectively, the magnetic-field-induced strain and the 

magnetization curve obtained for the case of small compressive stress σyy (0.6 MPa). The 

points (a, b, c, d, e, f, g, h) on the figures indicate the sequences of the material’s responses. 

Path a�b�c�d�e�f corresponds to the first magnetic loading-unloading cycle, and path 

f�g�h�g�f corresponds to the second cycle. At the beginning of the first cycle, the strain 

εyy remains 0 and the magnetization increases slowly (a�b in Figs. 35(a) and 35(b)) until the 

switching field µ0Hsw (≈ 0.3 T in Fig. 35(a)) is reached, where the martensite reorientation 

starts and a rapid increase of both strain and magnetization is observed (b�c). For the small 

values of σyy (0.6 MPa here), the martensite reorientation is almost complete (i.e., all variant 2 

has transferred to variant 1 during magnetic loading), so the strain change ε0 (≈ 5.8%) due to 

martensite reorientation is obtained at the end of loading (point d in Fig. 35(a)). During the 

magnetic unloading (magnetic field decreases to 0), the small stress cannot induce the reverse 

martensite reorientation, so the material remains in the state of V1 and no reversible strain is 

predicted. But in the experiment, a small reversible strain (εrev/ε0 < 20%) is observed. The 

simulation is performed on a material point while the experiment gives a structural response, 

where the stress and the magnetic field are not strictly uniform. For the second magnetic 

loading-unloading cycle (magnetic field in the negative direction of x-coordinate), no 

martensite reorientation is induced and no strain change is predicted. The material’s response 

of the first cycle is quite different from that of the second cycle. Such phenomenon is called 

first cycle effect.  

For a larger constant compressive stress σyy (e.g., 1.4 MPa in Figs. 35(c) and 35(d)), 

martensite reorientation during loading begins at a larger switching field (µ0Hsw ≈ 0.5 T in Fig. 

35(c)), because σyy hinders the martensite reorientation process. During unloading, reverse 

martensite reorientation is induced by σyy and a rapid decrease of strain εyy is observed in Fig. 

35(c). At the end of unloading, the material returns to its initial variant state, so a large 
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reversible strain is obtained. The material’s behaviors are repeated in the following magnetic 

loading-unloading cycles. If the compressive stress σyy is too large (e.g., 3 MPa in Figs. 35(e) 

and 35(f)), martensite reorientation is totally blocked and no strain is observed. The 

compressive stress over which the martensite reorientation is blocked is defined as blocking 

stress σb. To obtain the magnetic-field-induced strain in the 1D case (uniaxial stress with a 

magnetic field), the applied compressive stress σyy cannot exceed σb. However, σb is only a 

few MPa (Heczko et al., 2000; Murray et al., 2000). To obtain a larger output stress σyy  

(larger than σb), FSMA must work in multi-axial loadings (multi-axial stress with a magnetic 

field), which is the topic of the following sub-section.  
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Fig. 35. Comparison between simulations and experiments (Heczko, 2005) of the material’s magneto-

mechanical responses at different levels of compressive stress σyy: (a) and (b) for σyy = 0.6 MPa, (c) 

and (d) for σyy = 1.4 MPa, (e) and (f) for σyy = 3 MPa. Figures on the left-hand side represent the 

magnetic-field-induced strain and those on the right-hand side are the magnetization curves. 

 

 

4.3.1.2. Non-rotating magnetic field with biaxial stresses 

Magnetic field Hx (along x-coordinate) and constant biaxial compressions σxx and σyy 

(along x- and y- coordinate, respectively) are applied to the material in the initial state of V2 

(see Fig. 36). The material can switch to V1 during the magnetic loading and switch back 

during unloading depending on the stress levels. As indicated by Eq. (108a), the 

thermodynamic driving force A12 for the martensite reorientation between variant 1 and 2 

depends on the stress difference (σyy−σxx), so the key parameters in the biaxial loading 

conditions are not the two stresses themselves, but their difference (σyy−σxx). Fig. 37 shows the 

effects of the stress difference (σyy−σxx) on the material’s magneto-mechanical responses 

predicted by the model.  
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Fig. 36. FSMA used as an actuator driven by a non-rotating magnetic field (2D case: biaxial 

compressions). During magnetic loading-unloading, martensite reorientations between V2 and V1 are 

induced.  

 

For the cases of small and large stress differences (e.g., σyy−σxx = 0 MPa and 3 MPa in Fig. 

37(a)), martensite reorientation is blocked either during magnetic loading (σyy−σxx = 3 MPa) or 

unloading (σyy−σxx = 0 MPa), so no reversible strain is observed. To obtain a large reversible 

strain, medium levels of the stress difference are needed (e.g., σyy−σxx = 1.3 MPa and 1.6 MPa 

in Fig. 37(a)). It is noted that the effect of the biaxial stresses ( 2D
xxσ  and 2D

yyσ ) on the 

material’s behaviors is identical to that of a uniaxial stress 1D
yyσ  in 1D configuration: 1D

yyσ ~ 

2 2( )D D
yy xxσ σ− . So the applied compressive stress 2D

yyσ  in 2D configurations can be larger than 

the blocking stress σb (stress limit in the uniaxial loading conditions, see sub-section 4.3.1.1), 

as long as the stress difference (2D
yyσ − 2D

xxσ ) is less than the blocking stress. Similar 

discussions can also be found in (He et al., 2011, 2012).  

The simulation results (Figs. 35 and 37) of the martensite reorientation induced by the non-

rotating magnetic field demonstrate that the model is able to describe most of the 

characteristic features of the material’s behaviors: hysteresis, influence of the compressive 

stress on the switching field, blocking of martensite reorientation at high stress levels, first 

cycle effect at low stress levels, etc.  
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Fig. 37. Model predictions of the material’s magneto-mechanical responses at different levels of 

compressive stress difference (σyy−σxx): (a) for magnetic-field-induced strain, (b) for magnetization 

curves. 

 

 

4.3.2. Martensite reorientation induced by a rotating magnetic field  

 

 

Fig. 38. FSMA used as an actuator driven by a rotating magnetic field. α is the rotation angle. 

Periodical martensite reorientations between V1 and V2 lead to reversible strain during the rotation of 

the magnetic field. 

 

FSMA-based actuators can also be driven by a rotating magnetic field (see Fig. 38). The 

material’s behavior in a rotating magnetic field is simulated and compared with experiments 

(Müllner et al., 2002) in Fig. 39. The rotation starts with the field along x-coordinate (rotation 

angle α = 0°) and the material’s initial state V1. During the first half-cycle (α: 0°�180°), the 
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material changes from V1 to V2 at a switching angle α1 (≈ 54° in Fig. 39) with a rapid 

decrease in strain εyy. The strain is recovered when V2 switches back to V1 at another 

switching angle α2 (≈ 144° in Fig. 39). Such process is repeated in further rotations. The strain 

change during the martensite reorientations is smaller in experiment than in simulation, 

because simulation is done with ε0 = 5.8% while ε0 of the material used in experiment is 1.9% 

(Müllner et al., 2002). In the first half-cycle, the material is in the state of V2 for the angle 

range of [α1, α2]. Considering a rotating field of constant rate, the time fraction of variant 2 is: 

(α2 – α1)/180° = 50%, which means that both variants occupy the same time fraction in a 

rotation cycle. 

 

 

Fig. 39. Evolution of strain εyy with the rotation of the magnetic field (with constant magnitude µ0H = 

2 T): results from the simulation (solid line) and experiment (crosses) are compared. α1 and α2 are the 

switching angles where the martensite reorientations take place during the first half-cycle of rotation.  

 

The time fractions of the variants can be changed by applying certain compressions (e.g., 

σxx and σyy respectively along x- and y-coordinate, see Fig. 40(a)). The simulation results in 

Fig. 40(b) indicate that both the time fractions of the variants and the field-induced reversible 

strain of the material depend on the stress difference (σxx − σyy). When σxx and σyy are equal, 

the time fractions of the two variants in a rotation cycle are equal (σxx−σyy = 0 in Fig. 40(b)). 

When σxx is larger, V1 occupies a larger time fraction (e.g., σxx−σyy = 1 MPa); when σxx is too 
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large, martensite reorientation is blocked and the material is always in the state of V1 (e.g., 

σxx−σyy = 3 MPa). An analytic relation between the stress difference and the time fractions of 

the variants can be found in (He et al., 2011). For the part of the reversible strain, when the 

stress difference |σxx−σyy| is small (e.g., σxx−σyy = 0 or 1 MPa in Fig. 40(b)), the martensite 

reorientations between V1 and V2 are complete so that the maximum reversible strain of 

5.8% (= ε0) is obtained. When |σxx−σyy| is medium (e.g., σxx−σyy = 1.7 MPa in Fig. 40(b)), 

martensite reorientations are incomplete due to hardening effects (interaction parameter k > 0). 

So a smaller reversible strain (< ε0) is obtained. When |σxx−σyy| is large (e.g., σxx−σyy = 3 MPa 

in Fig. 40(b)), martensite reorientation is blocked and no strain change is observed.  

 

 

 
 

Fig. 40. (a) FSMA in a rotating magnetic field H and constant biaxial compressions σxx and σyy. (b) 

Model predictions of rotating-field-induced strain εyy at various levels of stress difference (σxx−σyy).  

 

 

4.3.3. Super-elasticity under biaxial compressions 

Before discussing the simulation results for biaxial compressions, we first report our recent 

2D compression tests (for comparison with simulations) since all of the existing experiments 

on FSMA are done in 1D configurations (i.e., a magnetic field with a uniaxial stress of a few 

MPa). Our 2D compression tests in this sub-section aim to explore the possibility of using 

FSMA in multi-axial stresses of high levels. Fig. 41(a) shows the schematic diagram of the 
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experimental setup: the material in the initial state of martensite variant 1 is under a constant 

compressive stress σxx along x-coordinate and a varying compressive stress σyy along y-

coordinate. Variant 1 switches to variant 2 during the loading of σyy, and switches back during 

unloading. Compressive strains are positive in this sub-section and in the following sub-

section 4.3.4.  

 

  

Fig. 41. (a) Schematic diagram of the experimental setup for symmetric biaxial compression tests. (b) 

Friction occurs on the contact surfaces between the clampers and the sample’s y-z surfaces. Dotted 

lines are marked on the sample for reference showing the relative motion between the sample and the 

clampers.  

 

During the experiments, the sample contracts or elongates, leading to the external friction 

between the clampers and the sample’s surfaces (see Fig. 41(b)). The effects of the external 

friction are removed from the nominal stress 0
yyσ  to get the effective stress σyy (details about 

the external friction can be found in Chapter 3 – sub-section 3.1.3):  

0
2 1/yy yy xxs sσ σ µσ= −                     during loading                                                      (122a) 

0
2 1/yy yy xxs sσ σ µσ= +                     during unloading                                                 (122b) 
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where µ is the friction coefficient (measured to be 0.095); s1 is the cross section area of x-z 

surface ( 21 2.5 mm× , see the insert of Fig. 41(a)); s2 is the contact area of y-z surface between 

the sample and the clampers ( 21 10 mm× with the clamper length of 10 mm, see Fig. 41(a)).  

Figure 42 shows four stress-strain curves (σyy−εyy) at different levels of σxx (0 ~ 9 MPa). 

For the case of uniaxial compression test (σxx = 0 in Fig. 42(a)), after a very small elastic 

loading, martensite reorientation from variant 1 to variant 2 begins. During the reorientation, 

with compressive strain εyy increasing, the compressive stress σyy remains nearly constant (so-

called stress plateau). After the reorientation, the elastic deformation of variant 2 leads to 

significant stress increase. During unloading (compressive stress σyy decreases to 0), only the 

small elastic deformation is recovered. Residual strain as large as 5.7% appears because the 

material is in the state of variant 2 rather than variant 1 (initial state) at the end of unloading. 

For biaxial compressions (σxx ≠ 0 in Figs. 42(b), 42(c) and 42(d)), the residual strain decreases 

significantly with increasing σxx, because reverse martensite reorientation from variant 2 to 

variant 1 is induced during unloading. At high levels of σxx (e.g., 6.5 MPa in Fig. 42(c), 9 MPa 

in Fig. 42(d)), super-elasticity is obtained (zero residual strain). The biaxial compression tests 

show that the intrinsic dissipation and the transformation strain related to the martensite 

reorientation are constant in all the tested 2D stress states, which imply the possibility of 

using FSMA in high levels of multi-axial stresses while keeping their advantages — low 

intrinsic dissipation and large reversible strain (Chen et al., 2013).  
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Fig. 42. Compressive stress-strain curves (σyy−εyy) at different levels of σxx: (a) σxx = 0 MPa, (b) σxx = 1 

MPa, (c) σxx = 6.5 MPa, (d) σxx = 9 MPa. Simulations (solid lines) and experiments (dotted lines, after 

removing the effects of the external friction by Eq. (122)) are compared. 

 

Model simulations are also shown in Fig. 42 to compare with the experiments. It is seen 

that the model can capture the important effects of the auxiliary stress σxx on the material’s 

mechanical behaviors (σyy−εyy curves): super-elasticity at high σxx, and dependence of the 

plateau stresses on σxx. In the experiments, hardening increases with the increase of σxx. The 

increasing hardening is due to the fact that under biaxial stresses, the martensite reorientations 

are realized by the motion of many fine twin boundaries, in contrast to the motion of single or 

a few twin boundaries under uniaxial stress (Chen et al., 2013). Although the model assumes 

constant hardening (constant interaction parameter k) for all stress states, the simulated 

plateau stresses are close to the average plateau stresses observed in the experiments (see Figs. 

42(c) and 42(d)).  

 

 

4.3.4. Field-assisted super-elasticity 

Besides actuators, FSMA can also be used as a sensor or voltage generator or magnetically 

controlled damper (e.g., Stephan et al., 2011; Suorsa et al., 2004). Fig. 43 shows a schematic 

diagram of the loading conditions for FSMA sensor/generator/damper: the material in the 

initial state of V1 is under a compressive stress σyy along y-coordinate and a constant magnetic 
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field Hx along x-coordinate. During the mechanical loading-unloading of σyy, martensite 

reorientations between V1 and V2 are induced. Comparisons between simulation predictions 

and experimental observations (Heczko, 2005) are shown in Fig. 44. 

 

 

Fig. 43.  FSMA used as a sensor/generator/damper. During the mechanical loading-unloading, 

martensite reorientations between V1 and V2 are induced.  

 

Figure 44(a) is the stress-strain curve (σyy−εyy) of martensite reorientation under uniaxial 

compression σyy (µ0Hx = 0), which is the same as Fig. 42(a). For the magnetization evolutions 

(Fig. 44(b)), no net magnetization is observed without the magnetic field Hx. In the moderate 

magnetic fields (e.g., µ0Hx = 0.4 T), rapid magnetization changes are observed during the 

martensite reorientations (Fig. 44(d)), and such stress-induced magnetization change can be 

used for sensors or voltage generators. In the strong magnetic fields (e.g., µ0Hx = 1.1 T), 

magnetization remains at the saturation level (Fig. 44(f)), because both variants arrive at 

saturation magnetization along the field. It is also seen that super-elasticity is obtained in the 

medium and strong fields (Figs. 44(c) and 44(e)). The intrinsic dissipation in the hysteresis 

loop of the stress-strain curves can be used for dampers.  
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Fig. 44. Comparison between simulations and experiments (Heczko, 2005) of the material’s magneto-

mechanical responses at different levels of magnetic field µ0Hx: (a) and (b) for µ0Hx = 0 T, (c) and (d) 
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for µ0Hx = 0.4 T, (e) and (f) for µ0Hx = 1.1 T. Figures on the left-hand side are stress−strain curves 

(σyy−εyy) and those on the right-hand side represent the magnetization evolution with the applied stress 

σyy. 

 

Comparing Figs. 44(a), 44(c) and 44(e), it is seen that the stress plateaus for forward and 

reverse martensite reorientations increase with increasing Hx. The effect of Hx on the 

material’s mechanical behaviors (σyy−εyy curves) is similar to that of σxx in the case of biaxial 

compressions (see sub-section 4.3.3). In fact, we can calculate the equivalent stress of Hx (so-

called magneto-stress σmag(Hx)) by the increase of the plateau stress in the magnetic field 

(shown in Fig. 45(a)). The model well predicts the dependence of σmag on Hx: σmag increases 

with increasing Hx and saturates at a certain level where both variants reach the saturation 

magnetization (Fig. 45(b)). 

 

   

Fig. 45. (a) Illustration of the magneto-stress σmag(Hx). (b) Magneto-stress σmag obtained from 

simulations and experiments (Müllner et al., 2003). 

 

The model quantitatively predicts the characteristic features of the material’s behaviors in 

the experiments: hysteresis, magneto-stress evolutions, magnetization change in moderate 

magnetic fields, super-elasticity in strong magnetic fields, etc.  
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4.3.5. Thermo-magneto-mechanical behaviors of ferromagnetic shape memory 

alloys 

Several parameters (i.e., ε0, σtw, Ms, Ku) governing the material’s behaviors are temperature 

dependent (Glavatska et al., 2002; Heczko and Straka, 2003; Heczko and Ullakko, 2001; 

Jiang et al., 2005; Okamoto et al., 2006; Straka and Heczko, 2003b; Straka et al., 2006, 

2011a). Although the temperature-dependence of these parameters are generally non-linear in 

a wide temperature range, the material’s working temperature range is not large, i.e., around 

10 K ~ 120 K below the martensitic transformation temperature, where the field-induced 

martensite reorientation exists (O’Handley et al., 2006). In this regard, we can make linear 

approximations for a rough estimation of the material parameters in the working temperature 

range: 

0 1 2( )T c T cε = +                                                                                                         (123a) 

3 4( )tw T c T cσ = +                                                                                                       (123b) 

5 6( )sM T c T c= +                                                                                                       (123c) 

7 8( )uK T c T c= +                                                                                                        (123d) 

where the coefficients ci (i = 1, 2,…, 8) can be determined from experiments. By fitting the 

experimental results of ε0, σtw, Ms and Ku at different temperatures (see Fig. 46), we can obtain:  

0( ) 0.012 9.33T Tε = − +                                                                                                (124a) 

( ) 0.0093 3.67tw T Tσ = − +                                                                                            (124b) 

( ) 960 840000sM T T= − +                                                                                            (124c) 

( ) 760 390000uK T T= − +                                                                                            (124d) 
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Fig. 46. Linear approximations of the temperature-dependence of the material parameters (ε0(T), σtw(T), 

Ms(T) and Ku(T) ) in the working temperature range.  

 

Equation (124) (for calculating ε0, σtw, Ms, Ku) and Table 3 (for other model parameters) 

are used in the simulations of temperature-dependent behaviors of FSMA. Model predictions 

of field-induced martensite reorientation under the constant compressive stress σyy of 1 MPa 

(see Fig. 34 for the experimental set-up) at different temperatures are compared with the 

experimental results in Fig. 47. It is seen from Figs. 47(a), 47(c) and 47(e) that the forward 

martensite reorientations during magnetic loading are complete, while the reverse martensite 

reorientations during unloading depend on the temperatures. At low temperatures where the 

applied compressive stress σyy (= 1 MPa) is smaller than σtw, reverse martensite reorientation 

cannot be induced by σyy during magnetic unloading, so no reversible strain is predicted (e.g., 

T = 223 K in Fig. 47(a)). A small reversible strain observed in the experiment is possibly due 

to the structural response (some stress concentration in corners or clamping end, etc.). When 

the temperature increases, σtw decreases (see Fig. 46(b)), leading to partial reverse martensite 

reorientation (e.g., σtw ≈ 1 MPa at T = 288 K in Fig. 47(c)). Complete reverse martensite 
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reorientation is obtained at higher temperatures where σtw < 1 MPa (e.g., T = 307 K in Fig. 

47(e)).  
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Fig. 47. Material’s magneto-mechanical behaviors at different temperatures T: (a) and (b) for T = 223 

K, (c) and (d) for T = 288 K, (e) and (f) for T = 307 K. Figures on the left-hand side represent the 

magnetic-field-induced strain and those on the right-hand side are the magnetization curves. 

 

In the previous case, σyy is small, so the magnetic field can conquer σyy and σtw to induce 

the complete forward martensite reorientation in the working temperature range. In another 

case where σyy is relatively large (e.g., σyy = 1.9 MPa > σtw(T) in Fig. 48), the reverse 

martensite reorientation (induced by σyy during magnetic unloading) is complete, while the 

forward martensite reorientation (induced by the magnetic field during magnetic loading) 

depends on the temperatures. At low temperatures, martensite reorientation is totally blocked 

because σtw is too large for the magnetic field to induce martensite reorientation (e.g., T = 220 

K in Fig. 48). With the temperature increase, σtw decreases and the forward martensite 

reorientation is induced, so more and more strain is observed (see the magnetic-field-induced 

strain at T = 250 K, 280 K and 310 K in Fig. 48).  
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Fig. 48. Model predictions of magnetic-field-induced strain under the constant compressive stress of 

1.9 MPa at different temperatures.  

 

In quasi-static loadings (the frequency of the magnetic field is low), temperature variation 

is negligible. However, in dynamic loadings (the frequency of the magnetic field is larger than 

100 Hz), temperature variation in the material can be important due to the mechanical 

intrinsic dissipation and the heat from eddy current: Henry (2002) analytically calculated a 

temperature increase of 13 K in 5 s in the magnetic field of 500 Hz; Lai (2009) observed, in 

the magnetic field of 400 Hz, a temperature increase of 7 K in 35 s and this increase was not 

saturated. The temperature increase of the material in dynamic loadings will influence its 

behaviors. Take an example of a dynamic test in the magnetic field of 500 Hz with the 

predicted temperature increase of 13 K in 5 s by (Henry, 2002): At the beginning, the 

material’s behavior is similar to that in Fig. 47(c). After 10 seconds, the temperature can rise 

to 307 K and the material’s behavior can change to Fig. 47(e). After another 10 seconds, there 

can be no strain change due to the martensite reorientation, because the temperature is higher 

than the austenite finish temperature. A rough estimation of the evolutions of the material’s 

response is shown in Fig. 49. Therefore, temperature effects should be taken into account in 
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high frequency dynamic analysis. In this case, the constitutive model with temperature effects 

can be extended for the dynamic problems of thermo-magneto-mechanical coupling.    

 

 

Fig. 49.  Rough estimations of the magnetic-field-induced strain under high-frequency dynamic 

loading. (a) Beginning. (b) After 10 seconds the material’s temperature rises. (c) After 20 seconds the 

temperature is so high that the material is in the austenitic phase.   
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4.4. Structural analysis of ferromagnetic shape memory beams 

In literature, besides the linear FSMA actuators and sensors, some FSMA bending 

actuators and dampers have also been proposed (e.g., Kohl et al., 2004, 2007; Zeng et al., 

2010). To predict the nonlinear bending behaviors of FSMA beams, our 3D constitutive 

model is incorporated into finite element analysis in this section. The simulated beam is fixed 

at one end (no displacement or rotation) and a vertical force (Fy = 0.1 N) is applied at another 

end (see Fig. 50). Structural calculations are done using the finite element code Cast3M with 

the model parameters in Table 3 and simulation algorithm in Table 4.  

 

 

Fig. 50. Clamped FSMA beam for numerical analysis of bending behaviors. 

 

Table 4. Algorithm of structural calculations. 
_________________________________________________________________________ 

Initialization of model parameters 

Initialization of structure state 

Input: applied force F  

Output: displacement field u 

Start:  

    Equally divide the mechanical loading path into N steps ( F∆ ) 

    Initialize the step: n = 1. 

While n < N + 1: 
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1. ( ) ( -1)n nF F F= + ∆ . 

2. Initialization of the iteration:  

■ Set iteration number  l = 1.  

■ ( )( 0)n lε = = ( -1)nε ;    zij
(n)(l=0) = zij

(n-1)   ((i, j)=(1,2), (2,3), (3,1));    zi
(n)(l=0) = zi

(n-1)   (i = 1, 2, 3). 

3. With applied force ( )nF and z12
(n)(l-1), z23

(n)(l-1), z31
(n)(l-1),  compute the displacement field u(n)(l): 

■ Solve the governing equation with boundary condition considered in the finite element 

formulation for the nodal displacement {u}, and the nodal traction {T} on the surface 

of imposed displacement: 

[ ] [ ]
[ ] { }

{ } { }
{ }

( )( 1) ( )( 1) ( )( 1)
12 23 31

*

( , , ) { }

 0

n n l n l n l

t

F ZZ z z zK G u

TG u

− − − + −    =     
          

where [K] is the stiffness matrix; [G] is the localization matrix related to the boundary 

condition of imposed displacement (Bonnet and Frangi, 2006); {Fn} is the applied nodal 

force; {ZZ} is the supplementary effort related to the volume-fraction transformations 

between the variants; {u*} is the imposed nodal displacement. The detailed presentations of 

the finite element formulations are given in Appendix B.  

■ Calculate the displacement field u(n)(l) by displacement discretization: 

[ ]{ }( )( )n lu N u=  

where [N] is a matrix composed of the shape functions related to all the nodes in the 

structure (see Appendix B.3). 

4. Compute the strain field with small strain approximation: ( )( ) ( )( ) ( )( )1
( )

2
n l n l n ltu uε = ∇ + ∇ . 

5. Compute the stress field by elastic loading increase: ( )( ) ( )( -1) ( )( ) ( )( -1): ( )n l n l n l n lCσ σ ε ε= + − , 

where C is the elastic stiffness tensor of the FSMA martensite.  

6. Compute the thermodynamic forces Aij
(n)(l)

  ((i, j)=(1,2), (2,3), (3,1))  by Eqs. (108). 

7. Detection of martensite reorientations: 
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■ If Aij
(n)(l) > σtwε0,  zi

(n)(l-1) > 0 and zj
(n)(l-1) < 1,  then martensite reorientation between variant i 

and j. 

■ If Aij
(n)(l-1)

 < −σtwε0, zi
(n)(l-1) < 1 and  zj

(n)(l-1) > 0,  then martensite reorientation between variant 

i and j. 

8. ■ If there is martensite reorientation between variant i and j, then calculate the volume fraction                                        

transformation ∆zij: 

 

( )( ) ( )( -1)( ) : : ( )

2 ( ) : : ( )

n l n l

i j

ij

i j i j

U U C
z

k U U C U U

ε ε− −
∆ = −

+ − −
      where 

i
U  and 

j
U are transformation strain tensors 

respectively for variant i and j (see Eq. (81) for the mathematical expressions). 

■ If there is no martensite reorientation between variant i and j, then ∆zij = 0. 

9. Update the volume fractions 

z12
(n)(l) = z12

(n)(l-1) + ∆z12 

z23
(n)(l) = z23

(n)(l-1) + ∆z23 

z31
(n)(l) = z31

(n)(l-1) + ∆z31 

z1
(n)(l) = z1

(n)(l-1)
 − ∆z12 + ∆z31 

             z2
(n)(l) = z2

(n)(l-1)
 – ∆z23 + ∆z12 

z3
(n)(l) = z3

(n)(l-1)
 – ∆z31 + ∆z23 

10. Check the governing equation with the updated z12
(n)(l), z23

(n)(l), z31
(n)(l): 

[ ] [ ]{ } { } { }( )( ) ( )( ) ( )( )
12 23 31{ } ( , , )n n l n l n lK u G T F ZZ z z z− = +  

■ If the governing equation stands within the defined tolerance, then the iteration stops: 

Update the results of the structural calculations for the current loading step n and then go to 

11. 

( )nu = ( )( )n lu ;  ( )nε = ( )( )n lε ;    zij
(n) = zij

(n)(l)   ((i, j)=(1,2), (2,3), (3,1));    zi
(n) = zi

(n)(l)   (i = 1, 2, 3).  

■ If the equation does not stand, continue the iteration: l = l+1, go back to 3.  

11.  Increase the counter for the structural calculations of the next loading step: n+1. 

End. 
___________________________________________________________________________ 
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4.4.1. Simulation results 

The material is assumed to be in the initial state of V2 with short axis along y-coordinate. 

The application of the force Fy (see Fig. 50) introduces a compression (along x-coordinate) on 

the top surface of the FSMA beam and a traction (along x-coordinate) on its bottom surface. 

As a result, variant switching from V2 to V1 (with short axis along x-coordinate) is induced 

by the compression on the top surface, while no variant switching happens on the bottom 

surface. Fig. 51 shows the simulated force-deflection curve with typical deformed shapes of 

the FSMA beam and the variants’ distributions at different levels of Fy (0 ~ 0.1 N). It is seen 

that after an initial elastic loading (①�②: Fy = 0 ~ 0.02 N), martensite reorientation from V2 

to V1 takes place (see the variants’ distributions in Figs. 51(c) and 51(d) at Fy = 0.04 N (③), 

0.06 N (④), 0.08 N (⑤) and 0.1 N (⑥)). During the reorientation, deflection increases 

significantly while the force Fy increases slowly (so-called force plateau, see the section ④�

⑥ in Fig. 51(a)). The deformed FSMA beam (Fig. 51(b)) and the corresponding variants’ 

distributions (Figs. 51(c) and 51(d)) demonstrate that the large deflection in the FSMA beam 

is due to the FSMA martensite reorientation.  
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Fig. 51. (a) Force−deflection curve of FSMA beam. Dend is the deflection at the free end of the beam. 

(b), (c) and (d) respectively show the evolutions of the deformed FSMA beam and the volume-fraction 

distributions for V2 (z2) and V1 (z1).  

 

 

4.4.2. Specimen-geometry effect on bending deflection 

To study the specimen-geometry effect on the deflection Dend (deflection at the free end of 

the beam), simulations are done for the beams with different cross sections. The thickness of 

the cross section is denoted by t (along the same direction as the applied force Fy) and the 

width is denoted by w (see Fig. 50). Both t and w are varied while the second moment of area 

Iz (
31

12
t w= ) is kept constant so that all the simulated beams have the same elastic response 
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(i.e., if the beams are elastic without martensite reorientation, they will give the same 

deflection). Thus, the simulated deflection difference is only related to the geometry effect on 

FSMA martensite reorientation. The constant Iz is given by the cross section t = 1 mm and w = 

2.5 mm (dimensions of the FSMA samples provided by Adaptamat Ltd. is usually 

31 2.5 20 mm× × ). Since Iz (
31

12
t w= ) is constant in the simulations, only one of t and w is 

independent. Here, t is chosen as the independent variable to plot the geometric effect on Dend 

(at Fy = 0.1 N) in Fig. 52.   

 

 

Fig. 52. Geometric effect on deflection Dend. The responses of the elastic beams (represented by 

triangles) without martensite reorientations (i.e., fixed z2 = 1, z1=z3=0) are shown for reference here.  

 

Contrary to the common sense that a thicker beam (with a larger thickness t) will give a 

smaller deflection, the deflection Dend of the FSMA beam shows a non-monotonic variation 

with the thickness t: when t increases, Dend first increases to a maximum value, and then 

decreases (see Fig. 52). From Euler-Bernoulli beam theory, the absolute value of the 

compression xxσ  induced by the applied force Fy on the top surface of an elastic beam is: 

( ) ( )
2

y
xx

z

F t
x L x

I
σ

⋅
= −                                                                                                   (125) 
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where L is the length of the beam, x is the position along the beam (see Fig. 53).  

 

 
Fig. 53. Bending of an elastic beam. 

 

From Eqs. (108a) and (112a), σxx(x) must reach the twinning stress σtw (hardening is 

ignored: k = 0) in order to trigger the martensite reorientation from V2 to V1. Eq. (125) shows 

that ( )xx xσ  is proportional to the thickness t. So if t is small, then ( )xx xσ  will not be large 

enough (larger than σtw) to trigger martensite reorientation. For the extreme case where t is too 

small, even the maximum xxσ (x=0) is not large enough, then the FSMA beam will give an 

elastic response (see the force−deflection curve for t = 0.4 mm in Fig. 54). With the increase 

of t, σxx(x) increases and martensite reorientation takes place in more and more parts of the 

beam, which leads to the significant increase of deflection in Fig. 52. A typical 

force−deflection curve for t = 1 mm is shown in Fig. 54, where the martensite reorientation 

can be identified by a force plateau. When the martensite reorientation is completed, the 

maximum strain max
xxε  (= ε0) is reached on the top surface, so the displacement ux (= xx xε ⋅ ) on 

the top surface also reaches its maximum value max
xu . For the fixed displacementmax

xu on the 

top surface, the increase of the thickness t will reduce the slope of the beam (see a schematic 

diagram in Fig. 55), which leads to the decrease in deflection with further increasing t in Fig. 

52. Typical force−deflection curves for t = 2.2 mm and 4 mm are shown in Fig. 54: the end of 

martensite reorientation is indicated by a significant force increase after the force plateau.  
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Fig.  54. Force−deflection curves at different values of the beam thickness t. The presented deflection 

(Dend) is the deflection at the free end of the beam.  

 

 

Fig. 55. Illustration showing that for a fixed displacement max
xu on the top surface of the beam, the 

increase in the beam thickness from t1 to t2 reduces the slope of the beam from θ1 to θ2. Compared with 

the strain ε0 (5.8%) due to martensite reorientation on the top surface of the FSMA beam, the elastic 

strain (around 0.001%) on the bottom surface is very small. So the neutral axis of the FSMA beam is 

near the bottom surface. Here for the convenience of illustration, the neutral axis is assumed to lie on 

the bottom surface.  

 

 

4.4.3. Material anisotropic effect on bending deflection 

This sub-section studies the material anisotropic effects (i.e., initial states of martensite 

variants in the material) on the bending behaviors of the FSMA beams. Simulations are done 

for the FSMA beams in the initial state of V1 or V3. For each initial state (V1 or V3), a series 

of cross sections are used (varied thickness t and width w with constant second moment of 
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area Iz (
31

12
t w= ), similar to the simulations done in sub-section 4.4.2 for the initial state of 

V2). The deflection Dend at different thickness of t for the initial states of V1, V2 and V3 are 

compared in Fig. 56.  

 

 

Fig. 56. Geometric effect on deflection Dend for the FSMA beams in the initial states of martensite 

variant 1(V1), variant 2 (V2) and variant 3 (V3). 

 

It is seen from Fig. 56 that the behaviors of the FSMA beams in the initial state of V3 are 

different from those in the initial states of V1 and V2: When the thickness t is small (< 1 mm), 

the bending deflections of the FSMA beams in the initial state of V3 are much smaller than 

those in V1 and V2. For the FSMA beam in the initial state of V3, the V3 � V1 switching is 

induced on the top surface of the beam by the compression σxx, while on the bottom surface 

the material responses elastically to the tension along x-coordinate, i.e., it is expanded in x 

direction and compressed in y and z directions (see Fig. 57(a)). The shrinkage of the bottom 

surface along z-coordinate introduces a compression σzz on the top surface (see a schematic 

diagram in Fig. 57(b)). σzz energetically prefers V3 and hinders V3� V1 switching. Therefore, 

compared with the FSMA beams in the initial states of V1 and V2, the FSMA beam in the 
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initial state of V3 has less martensite reorientation, leading to smaller deflection.  Experiments 

on damping behaviors of FSMA beams (with thickness t = 1.1 mm) show the same material 

anisotropic effects: the FSMA beams in the initial of V1 and V2 have much larger loss factors 

than the FSMA beam in the initial state of V3, because the latter one has less martensite 

reorientation (Zeng et al., 2010). σxx is proportional to the beam thickness t (see Eq. (125)), so 

when t is large enough (> 1.5 mm in Fig. 56), martensite reorientation induced by σxx can be 

completed in all the FSMA beams (with the initial state of any variant). Therefore, the same 

level of deflection is obtained at large t. 

 

  

Fig. 57. (a) The bottom surface is expanded in x direction and compressed in y and z directions. The 

white and grey areas respectively represent the initial and the deformed shapes of the bottom surface. 

The deformation is exaggerated in the schematic diagram. (b) The shrinkage of the bottom surface 

along z-coordinate introduces a compression σzz on the top surface.  

 

 

4.5. Conclusions 

A 3D constitutive model of martensite reorientation in Ferromagnetic Shape Memory 

Alloys (FSMA) is developed within the framework of thermodynamics of irreversible 

processes with internal variables. Compared with the existing models, the model has the 

following advantages: 

(1) The model is able to quantitatively describe all the existing magneto-mechanical 

behaviors of FSMA: e.g., rotating/non-rotating magnetic-field-induced martensite 

reorientation and field-assisted super-elasticity. Moreover, experimental results of biaxial 
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loadings are reported, which agree well with the model simulations. The model, considering 

all the martensite variants and validated by 2D experiments, is ready for use in the general 3D 

magneto-mechanical loading conditions.   

(2) Only a few internal state variables are involved in the model and the model parameters 

can be easily identified by simple experiments, which facilitate the practical use of the model.  

(3) The temperature effect on the material’s constitutive behaviors is considered in the 

model by taking several material properties as linear functions of temperature. In high-

frequency dynamic loadings where the temperature variation of the material can be important, 

the model can be extended for the study of thermo-magneto-mechanical couplings.  

(4) The model is incorporated into finite element analysis to predict the nonlinear bending 

behaviors of FSMA beams. Both the sample-geometry effect and the material anisotropic 

effect are systematically studied and found to be important when designing the FSMA-based 

bending actuators. 

The behavior of a matrial point can be different from that of a structure due to the 

demagnetization effect (depending on the geometry of the sample) and the presence of the 

magnetic body force, body couple and surface force. In Appendix B, the finite element 

formulations for structural analysis are developed.  
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Chapter 5Chapter 5Chapter 5Chapter 5   General conclusion and future work 

 

In this dissertation, we theoretically and experimentally study the martensite reorientation 

in Ni-Mn-Ga (5M martensite) Ferromagnetic Shape Memory Alloys (FSMA). A 2D/3D 

magneto-mechanical energy analysis is presented and incorporated into phase diagrams in 

order to study the path-dependent martensite reorientation of FSMA in general 3D loadings. 

The criteria and the material requirements for obtaining reversible strain in cyclic loadings are 

derived, which provide design guidelines for FSMA-based actuators. Furthermore, the energy 

analysis reveals the advantages of using FSMA in multi-axial configurations: e.g., high output 

stress, tunable switching field/angle where martensite reorientation takes place. To validate 

the predictions of energy analysis, martensite reorientation of FSMA in multi-axial loadings is 

experimentally studied. It is found that the intrinsic dissipation and the transformation strain 

due to martensite reorientation are constant in all tested 2D stress states. Moreover, 

preliminary results of 2D magneto-mechanical tests show that the output stress of FSMA can 

be increased by the increase of the auxiliary stress. All these findings imply the possibility of 

using FSMA in multi-axial loading conditions. In order to predict the magneto-mechanical 

behaviors of FSMA in 3D loadings, a constitutive model is developed within the framework 

of thermodynamics of irreversible processes. All the three tetragonal martensite variants are 

considered in the model and the temperature effects on martensite reorientation are also taken 

into account. The model is further incorporated into finite element analysis to study the non-

linear bending behaviors of FSMA beams. The sample-geometry effect and the material 

anisotropic effect are found to be important for designing the FSMA-based bending actuators. 

The proposed 3D constitutive model, validated by the existing 1D and 2D experiments, is 
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ready for practical use in analyzing the material’s behaviors in general multi-axial magneto-

mechanical loadings.   

The work will be continued with multi-axial experimental studies on FSMA containing 

Type II twin. Furthermore, experiments have shown that the deformation of FSMA during 

martensite reorientation is inhomogeneous (see the DIC images of strain localization in Fig. 

23). However, the constitutive model developed in this dissertation is just for describing the 

macroscopic behaviors of FSMA. New model will be developed to study the material 

instability and to simulate the strain pattern evolutions during martensite reorientation. 
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Appendix A. Supplementary document for multi-axial 

experiments on ferromagnetic shape memory alloys 

 

 

A.1. Biaxial compression tests   154 

A.2. Biaxial magneto-mechanical tests   156 

 

 

 

A.1. Biaxial compression tests 

The photos of the experimental setup are shown in Fig. A.1. Fig. A.2 shows the nominal 

stress−strain curves (σyy−εyy) at different levels of σxx (0 ~ 9 MPa).  

 

 

Fig. A.1. Photos of the experimental setup for symmetric biaxial compression tests. 
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Fig. A.2. Nominal stress−strain curves (σyy−εyy) at different levels of σxx (0 ~ 9 MPa). 
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A.2. Biaxial magneto-mechanical tests 

The photos of the experimental setup are shown in Fig. A.3. 

 

 

 
Fig. A.3. Photos of 2D magneto-mechanical setup. 
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Appendix B. Finite element formulation for magneto-mechanical 

analysis of Ferromagnetic Shape Memory Alloys (FSMA) 

 

 

B.1. Governing equations and boundary conditions for general magneto-mechanical analysis 157 

B.1.1. Magnetic part   157 

B.1.2. Mechanical part   159 

B.1.3. Summary of fully coupled dynamic magneto-mechanical analysis   161 

B.2. Weak form formulations   162 

B.2.1. Magnetic part   164 

B.2.2. Mechanical part   164 

B.3. Finite element formulations   165 

B.3.1. Magnetic part   165 

B.3.2. Mechanical part   168 

B.4. Summary   171 

 

 

B.1. Governing equations and boundary conditions for general magneto-

mechanical analysis 

B.1.1. Magnetic part 

The total Maxwell’s equations are composed of four laws: Gauss’ law, Gauss-Faraday law, 

Ampère’s law and Faraday’s law. In the stationary frame, their global forms are: 

  eD n ds dρ
∂Ω Ω

⋅ = Ω∫ ∫�                                                                                                  (B.1a)
 

0B n ds
∂Ω

⋅ =∫�                                                                                                           (B.1b) 

( )
L S

D
H dl J n ds

t

∂⋅ = + ⋅
∂∫ ∫�                                                                                      (B.1c) 

L S

B
E dl n ds

t

∂⋅ = − ⋅
∂∫ ∫�                                                                                             (B.1d) 
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Where Ω is the domain occupied by the material body with boundary surface ∂Ω  and 

outward unit normal n ; S is the boundary surface with closed curve L and unit normal n ; B  

is the magnetic flux density and H is the magnetic field strength; D  is the electric 

displacement field, E  is the electric field strength, ρe is the free electric charge density and J  

is the free electric current density. After applying the divergence theorem or Stokes’ theorem, 

we arrive at the local forms of the equations: 

eD ρ∇⋅ =                                                                                                                  (B.2a) 

0B∇⋅ =                                                                                                                    (B.2b) 

D
H J

t

∂∇× = +
∂

                                                                                                       (B.2c) 

B
E

t

∂∇× = −
∂

                                                                                                           (B.2d) 

The Maxwell’s equations are supplemented by the following constitutive relations: 

0D E Pε= +                                                                                                              (B.3a) 

0( )B H Mµ= +                                                                                                         (B.3b) 

eJ E Jτ= +                                                                                                               (B.3c) 

where 0ε is the vacuum permittivity and 0µ is the vacuum permeability; M  is the 

magnetization density; τ is the electrical conductivity of the material; P  is the polarization 

density and eJ is the externally generated current density.  

For the analysis of non-polarizable materials ( 0P = ) like FSMA, Eq. (B.2a) can be 

neglected from the Maxwell’s equations, and the electric constitutive relation (Eq. (B.3a)) can 

be reduced to: 

0D Eε=                                                                                                                      (B.4) 

 Moreover, as no external current is applied ( 0eJ = ), Eq. (B.3c) can be rewritten as: 

J Eτ=                                                                                                                        (B.5) 

For relatively low frequencies (≪  1 GHz), the time variation of the electric displacement 

( 0

D E

t t
ε∂ ∂=

∂ ∂
) is negligible with respect to the induced current density (J Eτ= ), so the 

Ampère’s law (Eq. (B.2c)) becomes:  

H J∇× =                                                                                                                   (B.6) 

To further reduce the Maxwell’s equations, a magnetic vector potential A  is introduced as 



159 
 

B A= ∇×                                                                                                                    (B.7) 

So that the Gauss-Faraday law (Eq. (B.2b)) is automatically satisfied: ( ) 0B A∇ ⋅ = ∇ ⋅ ∇× ≡ . 

Replace the magnetic flux density B  by the magnetic vector potential A  in Eq. (B.2d): 

( )B A A A
E E

t t t t

∂ ∂ ∇× ∂ ∂∇× = − = − = −∇× ⇒ = −
∂ ∂ ∂ ∂

                                                  (B.8)
 

Equation (B.8) represents the relationship between the electric field strength and the time 

variation of the magnetic vector potential.   

In summary, the necessary equations for the magnetic analysis are: 

■ Maxwell’s equation – Ampère’s law: H J∇× =  

■ Useful relations: 

B A= ∇× ,  0( )B H Mµ= +  

A
E

t

∂= −
∂

,   J Eτ=  

 

Boundary conditions and initial conditions 

The two types of boundary conditions are: (1) imposed magnetic vector potential *A  on 

the surface A∂Ω , and (2) imposed magnetic field strength *H  parallel to the surface H∂Ω . 

The intersection of the two surfaces is empty and their union is the total surface of the 

material body. Mathematically, the boundary conditions can be expressed as: 

*  on   AA A= ∂Ω                                                                                                       (B.9a) 

*    on   HH n H n× = × ∂Ω                                                                                         (B.9b)                                                   

where  ,   A H A H t∂Ω ∂Ω = ∅ ∂Ω ∂Ω = ∂Ω∩ ∪ .  

The initial magnetic vector potential is given by the initial condition:   

0( , 0) ( )A x t A x= =                                                                                                    (B.10) 

 

B.1.2. Mechanical part 

Balance of linear momentum: The time rate of momentum change of a material body is 

equal to the resultant force acting upon the body (Eringen and Maugin, 1990). The global 

form of this balance is: 

   
t t t

d u
d T ds f d

dt t
ρ

Ω ∂Ω Ω

∂ Ω = + Ω
∂∫ ∫ ∫�

       

                                                                   (B.11) 
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where ρ is the mass density; Ωt is the domain occupied by the material body at the instant t; u 

is the displacement vector; T  is the traction on the boundary surface t∂Ω  of the material 

body; f  is the body force density (including mechanical and electro-magnetic parts). By 

introducing the Cauchy stress tensor σ
 
( n Tσ ⋅ = , where n  is the outward unit normal of the 

body surface), and using the conservation of mass and the divergence theorem, the local form 

of the balance equation can be obtained as: 

2

2

u
f

dt
σ ρ ∂∇ ⋅ + =                                                                                                      (B.12)                               

No mechanical body force is considered in the material. Since FSMA is only magnetizable, 

we have (Pérez-Aparicio and Sosa, 2004) 

0( )f J B H Mµ= × + ∇ ⋅                                                                                            (B.13) 

The 1st part on the right-hand side of Eq. (B.13) is the Lorentz force density, and the 2nd part 

is the force density due to the gradient of magnetic field. Then Eq. (B.12) can be rewritten as: 

2 2

02 2
( )

u u
f J B H M

dt dt
σ ρ σ µ ρ∂ ∂∇ ⋅ + = ⇒∇ ⋅ + × + ∇ ⋅ =                                         (B.14) 

Balance of angular momentum: The time rate of angular momentum change of a material 

body is equal to the resultant moment of all forces and the resultant of couples acting upon the 

body (Eringen and Maugin, 1990). The mathematical expression is: 

t t t

md u
x d x T ds x f C d

dt t
ρ

Ω ∂Ω Ω

∂  × Ω = × + × + Ω ∂∫ ∫ ∫�                                             (B.15) 

where x  is the position in the material body; mC is the magnetic couple density: 

 ( )0
mC M Hµ= ×                                                                                                      (B.16) 

After several calculations (see details in Appendix C.1), the local form can be reached: 

( )( )0skw skw M Hσ µ= ⊗                                                                                        (B.17) 

where the definition ( )1
:

2
tskwσ σ σ= − . Due to the presence of the magnetic body couple, 

the mechanical stress tensor σ  is not symmetric.  

There are two boundary conditions: imposed displacement *u  on the surface u∂Ω and 

applied traction *T  on the surface T∂Ω . The intersection of these two surfaces is empty and 

their union is the total surface of the material body. Mathematically, we have 
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*  on   uu u= ∂Ω                                                                                                      (B.18a)                                        

*  on    Tn Tσ ⋅ = ∂Ω                                                                                               
(B.18b)                                             

where  ,   u T u T t∂Ω ∂Ω = ∅ ∂Ω ∂Ω = ∂Ω∩ ∪ .  

One important thing to point out: The surface force *T  has two contributions, i.e., mechT  of 

mechanical origin and magT  of magnetic origin. magT  is defined as the jump of the Maxwell 

stress tensor MWσ , i.e., :mag MWT nσ= ⋅  (Hirsinger and Billardon, 1995). For magnetizable 

and non-polarizable materials, the general expression of the Maxwell stress MWσ  is: 

0

1
( )

2
MW H B H H Iσ µ= ⊗ − ⋅ , where I  is the identity tensor. In magneto-static case (no 

electric current), we have: 2
0

1
( )

2
MW n M n nσ µ⋅ = ⋅   (Kankanala and Triantafyllidis, 2004; 

Haldar et al., 2011).  

The initial displacement and velocity are given by the initial conditions: 

0( , 0) ( )u x t u x= =                                                                                                    (B.19a) 

0( , 0) ( )
u

x t v x
t

∂ = =
∂                                                                                                (B.19b) 

 

 

B.1.3. Summary of fully coupled dynamic magneto-mechanical analysis 

A summary of variables, equations and boundary conditions concerned in the general 

magneto-mechanical analysis is given below: 

 

Magnetic part 

■ Variables:  ,  ,  ,  ,  A B H M E 

■ Governing equation:  H J∇ × =                                                                                                                            

■ Useful relations 

B A= ∇× ,  0( )B H Mµ= +  

A
E

t

∂= −
∂

,   J Eτ=  

■ Boundary conditions 

*  on  AA A= ∂Ω  
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*    on   HH n H n× = × ∂Ω  

■ Initial condition:  0( , 0) ( )A x t A x= =  

 

Mechanical part 

■ Variables: ,  ,  ,  su ε σ σ  

Due to the presence of the magnetic body couple, the mechanical stress tensor σ  is 

generally non-symmetric. In this case, the symmetric stress tensor sσ  (related to σ  by Eq. 

(B. 20) is generally chosen as the state variable used in the constitutive equations. 

■ Governing equations  

0fσ∇ ⋅ + =  

( )( )0skw skw M Hσ µ= ⊗  

The body force f  includes mechanical and electro-magnetic body forces. 

■ Compatibility equation:  ( )( )1

2
t

u uε = ∇ + ∇  

Small strain and negligible rotation approximation is applied.  

■ Useful relation : ( )0
s H Mσ σ µ= + ⊗                                                                              (B.20) 

We take the expression of sσ  from (Haldar et al., 2011). Similar expression can also be 

found in (Hirsinger and Billardon, 1995). 

■ Boundary conditions 

*   on   uu u= ∂Ω  

*   on    Tn Tσ ⋅ = ∂Ω                                                                                                             

The surface force *T  includes the mechanical surface force and the magnetic surface force.  

■ Initial conditions: 0( , 0) ( )u x t u x= = , 0( , 0) ( )
u

x t v x
t

∂ = =
∂

.   

Coupled constitutive equations:  ( , ),   ( , )s sH M M Hε ε σ σ= =  

 

 

Note 1: If the magnetic body couple is zero (the magnetization M is co-linear with the 

magnetic field H), the mechanical stress tensor σ  is symmetric. In this case, σ  is directly 

used as a state variable in the constutive equations, and there is no need to calculate sσ or 
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consider the balance law of angular momemtum (i.e., Eq. (B.17): ( )( )0skw skw M Hσ µ= ⊗ ≡ 

0).  

 

Note 2: Static analysis (special case in dynamic analysis) 

In static case, the magnetic flux density B does not change with time. So there is no electric 

field E (induced by the time-variation of B) or electric current J. Therefore, the magnetic 

analysis part can be simplified as follows: 

■ Variables:  ,  ,  ,  A B H M  

■ Governing equation:  0H∇ × =                                                                                                                            

■ Useful relations:  B A= ∇× ,  0( )B H Mµ= +  

■ Boundary conditions 

*  on  AA A= ∂Ω  

*    on   HH n H n× = × ∂Ω  

 

 

B.2. Weak form formulations 

The weak form formulations developed in this sub-section and the finite element 

formulations in the following are for the constitutive model proposed in Chapter 4. In the 

constitutive model, the magnetization is co-linear with the magnetic field (the constitutive 

model gives the magnetization along the magnetic field). Therefore, the magnetic body couple 

is zero. The symmetric stress tensor σ  directly enters the constutitve model as a state variable. 

Appendix C.2 verifies that the magnetic body couple due to the magnetization part 

perpendicular to the magnetic field can be neglected. The formulations can be applied to all 

cases where there is no or negligible magnetic body couple.   

The displacement u and the magnetic vector potential A  are the unknowns that the 

mechanical and magnetic governing equations should solve respectively. So there are six 

nodal unknowns of the magneto-mechanical analysis: { } { }, , , , , ,
tt x y z x y zu A u u u A A A= . 
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B.2.1. Magnetic part 

The magnetic governing equation (Eq. (B.6)) is weighted by virtual variation of the 

magnetic vector potential ( )A xω , and then integrated over the material domain Ω. With 

boundary condition and constitutive relations (Eqs. (B.5), (B.8) and (B.9b)), we obtain the 

weak form formulation after several calculations: 

( ) ( ) ( ) ( )( )   *     
A H

A A A A A

A
H A d d H n ds H n ds D

t
ω τ ω ω ω ω

Ω Ω ∂Ω ∂Ω

∂∇ × ⋅ Ω + ⋅ Ω − × ⋅ = × ⋅ ∀ ∈
∂∫ ∫ ∫ ∫    (B.21) 

where D is a collection of admissible magnetic vector potentials in the domain Ω without 

considering the boundary condition of imposed *A (Eq. (B.9a)). Eq. (B.9a) is multiplied by 

an admissible magnetic field 'H  and then integrated over the surface A∂Ω  

( ) ( ) [ ]'  ' *    ( ' ' )
A A

AH n A ds H n A ds H D
∂Ω ∂Ω

× ⋅ = × ⋅ ∈ ∂Ω∫ ∫                                                         (B.22) 

where [ ]' AD ∂Ω  is a collection of admissible magnetic field strength on the boundary A∂Ω . 

 

B.2.2. Mechanical part 

The governing equation (Eq. (B.14)) is weighted by virtual variation of the displacement 

vector ( )u xω  and then integrated over the material domain Ω. By considering the boundary 

condition of applied traction (Eq. (B.18b)), we arrive at the weak form formulation of the 

governing equation after several calculations: 

2
*

 2
( ) : ( )      ( )

u T

u u u u u u

u
x d d T ds f d T ds C

t
σ ε ω ρ ω ω ω ω ω

Ω Ω ∂Ω Ω ∂Ω

∂Ω + ⋅ Ω − ⋅ = ⋅ Ω + ⋅ ∀ ∈
∂∫ ∫ ∫ ∫ ∫         (B.23) 

where C is a set of admissible displacements in the domain Ω without considering the 

boundary condition of imposed displacement (Eq. (B.18a)). To obtain the weak form 

formulation of Eq. (B.18a), the right-hand and left-hand sides of this equation are multiplied 

by an admissible traction 'T  and then integrated over the surface u∂Ω :  

[ ]*' '       ( ' ' )
u u

uu T ds u T ds T C
∂Ω ∂Ω

⋅ = ⋅ ∈ ∂Ω∫ ∫                                                                            (B.24) 

where [ ]' uC ∂Ω is a collection of admissible tractions on the surface u∂Ω . 
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B.3. Finite element formulations 

B.3.1. Magnetic part 

The magnetic vector potential ( )A x  is discretized as: 

[ ]{ }
1

( , ) ( ) ( ) ( ) ( )
pn

kk
k

A x t N x A t N x A t
=

= =∑
                                                              

(B.25) 

where np is the total number of nodes in the material domain; ( )kA t  and ( )kN x  are 

respectively the magnetic vector potential and the shape function on node k. In matrix 

expression, [ ]( )N x
 
is composed of all the shape functions and { }( )A t

 
is composed of all the 

nodal magnetic vector potentials: 

[ ]
1

1

1

( ) 0 0( ) 0 0

( ) 0 ( ) 0 ,......, 0 ( ) 0

0 0 ( ) 0 0 ( )

p

np

np

nN xN x

N x N x N x

N x N x

 
 
 =
 
 
 

                          (B.26)
       

 

{ } { }1 1 1( ), ( ), ( ), ( ), ( ), ( )( )   , 
p p p

t
x y z x y z

n n nt t t t t tA t A A A A A A⋅ ⋅ ⋅=                                     (B.27) 

Similarly, the virtual variation of magnetic vector potential Aω can also be expressed as: 

[ ]{ }( ) ( )A Ax N xω ω=
                                                                                               

(B.28) 

where { } { },1 ,1 ,1 ,n ,n ,n, , ,  , , ,
p p p

t
x y z x y z

A A A A A A Aω ω ω ω ω ω ω⋅ ⋅ ⋅= .  

With Eqs. (B.25) and (B.28), we can make following calculations for each term in the 

weak form magnetic governing equations (Eqs. (B.21) and (B.22) ): 

■ Time variation term (2nd term on the left-hand side of Eq. (B.21)) 

{ }[ ]{ ( )}
t

A A

A
d MC A t

t
τ ω ω

Ω

∂ ⋅ Ω =
∂∫

i

                                                                         (B.29) 

where ( )A t
i

 is the first order partial derivative of A with respect to time t; [ ]MC is the 

electrical conductivity matrix:[ ] [ ][ ]( ) ( )  
t

MC N x N x dτ
Ω

= Ω∫ . 

 

■ Unknown surface magnetic field (3rd term on the left-hand side of Eq. (B.21)) 

( ) { }[ ]{ }( )
A

t

A AH n ds GM H tω ω
∂Ω

× ⋅ =∫                                                                    (B.30) 
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[ ]GM is the localization matrix [Bonnet and Frangi, 2006] ; { ( )}H t is the nodal magnetic 

field ( )H n×  parallel to the boundary A∂Ω .  

 

■  Applied magnetic field term (right-hand side of Eq. (B.21)) 

( ) { }{ }*  ( )
H

t

A AH n ds FM tω ω
∂Ω

× ⋅ =∫                                                                       (B.31) 

where the nodal applied magnetic field strength is: { } [ ]( )( ) ( ) *( , )  
H

t
FM t N t H x t n ds

∂Ω

= ×∫ .                                   

 

■ Internal effort term (1st term on the left-hand side of Eq. (B.21)) 

We have: 

[ ]{ }( )A c AJ xω ω∇× =                                                                                                (B.32) 

where: 

[ ]

1 1

1 1

1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0

( ) 0 ,  ...... , 0

0 0

p p

p p

p p

n n

c n n

n n

x x x x

x x x x

x x x x

N N N N
z y z y

J x N N N N
z x z x

N N N N
y x y x

∂ ∂ ∂ ∂ − − ∂ ∂ ∂ ∂
 

∂ ∂ ∂ ∂ = − − ∂ ∂ ∂ ∂ 
∂ ∂ ∂ ∂ − − ∂ ∂ ∂ ∂ 

     (B.33) 

Similarly, we have:  

[ ]{ }( )cA J x A∇× =                                                                                                    (B.34) 

With Eqs. (B.7) and (B.34), we have: 

[ ]{ }( )cB J x A=                                                                                                          (B.35) 

Moreover, by Eq. (B.3b) and the constitutive equation for magnetization density M  (Eq. 

(103)), we obtain: 

3

0 1 2 3
1

( ) ( , , , )s
i i s i

i i

M
B H z a H H M a H H C H z z z H

a
µ

∧

=

  
= + + − − =    

  
∑               (B.36) 

where 
11 21 31 12 22 321 2 3 0 1 1 2 2 3 3 1 2 3( , , , ) (1 | | | ) ( | | | )s

H S H S H S H S H S H S

M
C H z z z z a z a z a z z z

H
µ ∈ ∈ ∈ ∈ ∈ ∈
 = + + + + + + 
 

. 

The six domains (i.e., S11, S12, S21, S22, S31, S32) are defined for the magnitude H of the 

magnetic field strength in Table B.1, where Ms is the saturation magnetization, a1, a2 and a3 
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are magnetic susceptibilities respectively for martensite variant 1, 2 and 3 (see Chapter 4 – 

sub-section 4.2.3.3). 

From Eqs. (B.35) and (B.36), we obtain:  

[ ]{ }
1 2 3

1
( )

( , , , ) cH J x A
C H z z z

=                                                                                (B.37) 

By introducing Eqs. (B.32) and (B.37), we have: 

( ) ( ) { }[ ]{ }1 2 3 ( , , , ) ( )
t

A AH A d KM H z z z A tω ω
Ω

∇× ⋅ Ω =∫                                         (B.38) 

where [ ] [ ][ ]1 2 3
1 2 3

1
( , , , ) ( ) ( )  

( , , , )
t

c cKM H z z z J x J x d
C H z z zΩ

= Ω∫ .  

 

With Eqs. (B.29), (B.30), (B.31) and (B.38), Eq. (B.21) can be reduced to: 

{ }[ ]{ } { }[ ] { }[ ]{ } { }{ }1 2 3( , , , ) ( ) { ( )} ( ) ( )
t t t t

A A A AKM H z z z A t MC A t GM H t FM tω ω ω ω+ − =
i

 

[ ] [ ]{ } [ ]{ } { }1 2 3{ ( )} ( , , , ) ( ) ( ) ( )MC A t KM H z z z A t GM H t FM t⇒ + − =
i

                   (B.39) 

                                                      

Table B.1. Domains for magnetic field strength. 

Domains for Variant 1 Domains for Variant 2 Domains for Variant 3 

S11 
1

sM
H

a
≤  S21 

2

sM
H

a
≤  S31 

3

sM
H

a
≤

 

S12 
1

sM
H

a
>  S22 

2

sM
H

a
>  S32

 3

sM
H

a
>

 

 

 

■ Boundary condition (Eq. (B.22)) 

With the discretization of the magnetic vector potential (Eq. (B.25)), the left-hand and 

right-hand sides of Eq. (B.22) can be written as (Bonnet and Frangi, 2006): 

( ) { } [ ]{ }' ' ( )
A

tt
H n A ds H GM A t

∂Ω

× ⋅ =∫                                                                (B.40a) 

( ) { }{ }' * ' * ( )
A

t
H n A ds H A t

∂Ω

× ⋅ =∫                                                                       (B.40b) 
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Where 'H  and {A*} are respectively the virtual nodal magnetic field ( )H n×  and the nodal 

imposed magnetic vector potential on the boundary A∂Ω . Therefore, Eq. (B.22) can be 

reduced to: 

[ ]{ } { }( ) *( )
t

GM A t A t=                                                                                            (B.41) 

In summary, the final discretized equations for magnetic analysis are: 

[ ] [ ]{ } [ ]{ } { }1 2 3{ ( )} ( , , , ) ( ) ( ) ( )MC A t KM H z z z A t GM H t FM t+ − =
i

 

[ ]{ } { }( ) *( )
t

GM A t A t=  

 

B.3.2. Mechanical part 

The displacement field ( )u x  can be discretized using the same nodes and shape functions 

as those used in the previous magnetic part (i.e., sub-section B.3.1): 

[ ]{ }
1

( , ) ( ) ( ) ( )
pn

kk
k

u x t N x u N x u t
=

= =∑
                                                                        

(B.42) 

where  

{ } { }1 1 1, , , , ,( ) ( )  ( ) ( )  , ( ) ( ) ( )
p p p

t
x y z x y z

n n nu t u t u t u t u t u t u t⋅ ⋅ ⋅=                                               (B.43) 

Similarly, the virtual variation of displacement ωu can be expressed as: 

[ ]{ }( ) ( )u ux N xω ω=                                                                                                  (B.44)
                                                            

where { } { },1 ,1 ,1 , , ,, , , , ,  , 
p p p

t
x y z x y z

u u u u u n u n u nω ω ω ω ω ω ω⋅ ⋅ ⋅= . 

 

With Eqs. (B.42) and (B.44), the following calculations are made successively for each 

term in the weak form formulations (Eqs. (B.23) and (B.24)): 

■ Inertial term (2nd term on the left-hand side of Eq. (B.23)) 

{ }[ ]{ }
2

2
 ( )

t

u u

u
d M ü t

t
ρ ω ω

Ω

∂ ⋅ Ω =
∂∫                                                                           (B.45) 

where ( )ü t  is the partial derivative of order 2 of u with respect to time t; [M] is the mass 

matrix: [ ] [ ][ ]( ) ( )  
t

M N x N x dρ
Ω

= Ω∫ . 

 

■ Unknown surface traction (3rd term on the left-hand side of Eq. (B.23)) 
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{ }[ ]{ } 
u

t

u uT ds G Tω ω
∂Ω

⋅ =∫                                                                                      (B.46) 

where [G] is the localization matrix (Bonnet and Frangi, 2006); {T} is the nodal force on the 

surface u∂Ω . 

 

■ External effort (right-hand side of Eq. (B.23)) 

{ } { }*  ( )
T

T

u u uf d T ds F tω ω ω
Ω ∂Ω

⋅ Ω + ⋅ =∫ ∫                                                                 (B.47) 

where the nodal external force is: { } [ ] [ ]( ) ( ) ( , ) ( ) *( ) 
T

T t
F t N x f x t d N x T x ds

Ω ∂Ω

= Ω +∫ ∫ . 

 

■  Internal effort term (1st term on the left-hand side of Eq. (B.23)) 

The infinitesimal strain tensor ε  is related to the displacement ( , )u x t  by: 

( )uε =
1

2
( ( , )u x t∇ + t ( , ))u x t∇ . So the strain vector { } { }( ) ,  ,  ,  2 ,  2 ,  2

t

xx yy zz xy xz yzuε ε ε ε ε ε ε=  

can be expressed as: 

{ } [ ]{ }( ) ( ) ( , )su J x u x tε =                                                                                           (B.48)                                              

Where 
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1 1
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 
∂ ∂ 

 ∂ ∂
 

∂ ∂
=  ∂ ∂ ∂ ∂
 ∂ ∂∂ ∂ 

∂ ∂ ∂ ∂
 

∂ ∂ ∂ ∂ 
 ∂ ∂ ∂∂
 ∂ ∂ ∂ ∂  

                                    (B.49) 

Similarly, the strain vector { }( )uε ω  related to the virtual displacement variation ( )u xω  can 

be expressed as:  
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{ } [ ]{ }( ) ( )u s uJ xε ω ω=                                                                                             (B.50)                                                   

The state equation for strain tensor (Eq. (101)) can be changed to the state equation for the 

stress vector { } { }( , ) ( , ),  ( , ),  ( , ),  ( , ),  ( , ),  ( , )
t

xx yy zz xy xz yzx t x t x t x t x t x t x tσ σ σ σ σ σ σ= : 

{ } [ ][ ]{ }
[ ]( )2 1 12 3 2 23 1 3 31

( , ) ( ) ( , )

             ({ } { }) ({ } { }) ({ } { })

sx t R J x u x t

R U U z U U z U U z

σ =

− − + − + −
                            (B.51) 

where [R] is the elastic rigidity matrix of FSMA martensite; {Ui} ( i = 1, 2, 3) is the strain 

vector corresponding to the transformation strain tensor 
i

U   for variant i (see Eq. (81) in 

Chapter 4).  

With Eqs. (B.50) and (B.51), we have:  

  
{ }[ ]{ } { }{ }12 23 31( ) : ( ) ( , , )

t t

u u uKx d u ZZ z z zσ ε ω ω ω
Ω

Ω = −∫                                  (B.52) 

where [K] is the stiffness matrix and {ZZ(z12, z23, z31)} is a supplementary effort related to the 

volume-fraction transformations between the variants:  

[ ] [ ][ ][ ]( ) ( )
t

s sK J x R J x d
Ω

= Ω∫    

{ }
[ ][ ]( )

12 23 31

2 1 12 3 2 23 1 3 31

( , , )

( ) ({ } { }) ( ) ({ } { }) ( ) ({ } { }) ( )
t

s

ZZ z z z

J x R U U z x U U z x U U z x d
Ω

= − + − + − Ω∫
 

 

With Eqs. (B.45), (B.46), (B.47) and (B.52), Eq. (B.23) can be changed to the following 

finite element formulation: 

{ }[ ]{ } { }[ ]{ } { }{ } { }[ ]{ } { }{ }12 23 31( ) ( ) ( , , ) ( ) ( )
t t t t t

u u u u uK u t M ü t ZZ z z z G T t F tω ω ω ω ω+ − − =  

[ ]{ } [ ]{ } { } [ ]{ } { }12 23 31( ) ( ) ( , , ) ( ) ( )KM ü t u t ZZ z z z G T t F t⇒ + − − =                          (B.53) 

 

■ Boundary condition of imposed displacement (Eq. (B.24)) 

With the displacement discretization (Eq. (B.42)), the left-hand and right-hand sides of Eq. 

(B.24) can be respectively rewritten as (Bonnet and Frangi, 2006): 

{ } [ ]{ }'  ' ( )
u

tt
u T ds T G u t

∂Ω

⋅ =∫
                                                                               

(B.54a) 

{ }{ }* '  ' * ( )
u

t
u T ds T u t

∂Ω

⋅ =∫
                                                                                  

(B.54b) 

where {T’} and {u*} are respectively the virtual nodal force and the imposed nodal 

displacement on the surface u∂Ω . With Eq. (B.54), Eq. (B.24) can be reduced to: 
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  [ ]{ } { }( ) *( )
t

G u t u t=
                                                                                              

(B.55) 

In summary, the final discretized equations for mechanical analysis are: 

[ ]{ } [ ]{ } { } [ ]{ } { }12 23 31( ) ( ) ( , , ) ( ) ( )KM ü t u t ZZ z z z G T t F t+ − − =
 

[ ]{ } { }( ) *( )
t

G u t u t=  

 

B.4. Summary 

In this section, the finite element formulations for fully coupled magneto-mechanical 

analysis of FSMA are derived. They are: 

■ For magnetic analysis 

[ ] [ ]{ } [ ]{ } { }1 2 3{ ( )} ( , , , ) ( ) ( ) ( )MC A t KM H z z z A t GM H t FM t+ − =
i

 

[ ]{ } { }( ) *( )
t

GM A t A t=  

■ For mechanical analysis 

[ ]{ } [ ]{ } { } [ ]{ } { }12 23 31( ) ( ) ( , , ) ( ) ( )KM ü t u t ZZ z z z G T t F t+ − − =
 

[ ]{ } { }( ) *( )
t

G u t u t=  

The iterative decoupled approach of structural analysis can be used (see the flowchart in 

Fig. B.1): magnetic and mechanical analyses are made successively, and then pass on to the 

‘martensite reorientation’ process where the volume fractions of the martensite variants can 

be updated. An equilibrium check (check of magnetic and mechanical governing equations) is 

made at the end of the iteration.  

 

Fig. B.1. Iteration of magneto-mechanical analysis. 
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Appendix C. Non-symmetric stress tensor of magnetic materials 

in magnetic field 

 

 

C.1. Introduction ― origin of the non-symmetric stress tensor for magnetic materials   172 
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C.1. Introduction ― origin of the non-symmetric stress tensor for magnetic 

materials 

When a magnetic material is placed in the magnetic field, magnetic body couple is 

generally induced in the material, which leads to the non-symmetric stress tensor of the 

material. In this section, the relation between the magnetic body couple and the non-

symmetric stress tensor is derived. Similar deductions can be found in Kiefer (2006).  

Balance of angular momentum: The time rate of angular momentum change of a material 

body is equal to the resultant moment of all forces and the resultant of couples acting upon the 

body (Eringen and Maugin, 1990). It is mathematically expressed as: 

( )
t t t

m md u
x d x T ds x f f C d

dt t
ρ

Ω ∂Ω Ω

∂  × Ω = × + × + + Ω ∂∫ ∫ ∫�                                    (C.1) 

where Ωt is the domain occupied by the material body at the instant t; t∂Ω is the boundary 

surface of the material body; x  is the position in the material body; u is the displacement 

vector; T  is the traction on the boundary surface; f  and mf are respectively the mechanical 

and magnetic body force densities; mC is the magnetic couple density, which is expressed as 

 ( )0
mC M Hµ= ×                                                                                                        (C.2) 

where µ0 (
74 10  T m/Aπ −= × ⋅ ) is the vacuum permeability; H is the magnetic field strength 

and M is the magnetization of the material. If H and M are in the same direction, there is no 
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magnetic couple ( 0mC = ); if not, due to the presence of the magnetic couple mC , the Cauchy 

stress tensor σ  is generally not symmetric.  

For the convenience of deriving the relation between mC and the non-symmetry of σ , Eq. 

(C.1) is rewritten by index notation for Cartesian coordinates: 

( )
t t t

j m m
ijk i ijk i j ijk i j j k

ud
x d xT ds x f f C d

dt t
ρε ε ε

Ω ∂Ω Ω

∂
 Ω = + + + Ω ∂∫ ∫ ∫�                          (C.3) 

where ijkε is the Levi-Civita symbol. The term on the left-hand side of Eq. (C.3) can be 

rewritten as: 

t

j
ijk i

ud
x d

dt t
ρε

Ω

∂
Ω

∂∫
  

,

t t

j j
ijk i ijk i l l

u ud
x d x v d

dt t t
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Ω Ω

∂ ∂   
= Ω + Ω   ∂ ∂   
∫ ∫

 

,

t t

j j
ijk i ijk i l l

u ud d
x d x v d

dt t t dt

ρρ ε ε ρ
Ω Ω

∂ ∂    = Ω + + Ω    ∂ ∂     
∫ ∫

 
2

,2

t t t
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u u ux d
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t t t t dt
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Ω Ω Ω
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∫ ∫ ∫

  
2
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t t t
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u u d
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t t dt
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Ω Ω Ω
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,2

t t

j j
ijk i ijk i l l

u u d
x d x v d

t t dt

ρρε ε ρ
Ω Ω

 ∂ ∂  = Ω + + Ω     ∂ ∂    
∫ ∫

                                        
(C.4) 

By conservation of mass ( , 0l l

d
v

dt

ρ ρ+ = ), the second term on the right-hand side of Eq. (C.4) 

is zero and we finally obtain: 

2

2

t t

j j
ijk i ijk i

u ud
x d x d

dt t t
ρε ρε

Ω Ω

 ∂ ∂
Ω = Ω  ∂ ∂ 

∫ ∫
                                                            

(C.5)
 

In the first term on the right-hand side of Eq. (C.3), replace the traction T with the Cauchy 

stress tensor σ
 
and use the divergence theorem: 

, ,( )

t t

t

ijk i j ijk i jl l

ijk i l jl i jl l

x T ds x n ds

x x d

ε ε σ

ε σ σ
∂Ω ∂Ω

Ω

=

= + Ω

∫ ∫

∫

� �
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,

t t

ijk ji ijk i jl ld x dε σ ε σ
Ω Ω

= Ω + Ω∫ ∫
 
                                                       (C.6)

 

Introducing Eqs. (C.5) and (C.6) into Eq. (C.3), we obtain: 

2

,2
( )

t t t t

j m m
ijk i ijk ji ijk i jl l ijk i j j k

u
x d d x d x f f C d

t
ρε ε σ ε σ ε

Ω Ω Ω Ω

 ∂
 Ω = Ω + Ω + + + Ω    ∂ 

∫ ∫ ∫ ∫
 

( )
2

, 2
0

t t

jm m
ijk i jl l j j ijk ji k

u
x f f d C d

t
ε σ ρ ε σ

Ω Ω

 ∂
⇒ + + − Ω + + Ω =  ∂ 
∫ ∫

                          
(C.7)

 

By the balance of linear momentum (
2

, 2

jm
jl l j j

u
f f

t
σ ρ

∂
+ + =

∂
), the first term on the left-hand 

side of Eq. (C.7) is zero and we obtain: 

( ) 0

0
t

m
ijk ji k

m
ijk ji k

m
ijk ji k

C d

C

C

ε σ

ε σ

ε σ

Ω

+ Ω =

⇒ + =

⇒ = −

∫

 

which means:  

12 21 3
mCσ σ− =                                                                                                           (C.8a) 

23 32 1
mCσ σ− =                                                                                                           (C.8b) 

31 13 2
mCσ σ− =                                                                                                            (C.8c) 

 

         

                                              

 

C.2. Non-symmetric stress tensor in ferromagnetic shape memory alloys 

In this section, we calculate the maximum difference (σij−σji, i≠j) due to the magnetic body 

couple in Ni-Mn-Ga ferromagnetic shape memory alloys. The material is assumed to be in the 

state of martensite variant II (with short axis along x2-coordinate) consisting of a single 

magnetic domain. A magnetic field H1 along x1-coordinate is applied (see Fig. C.1(a)). By Eq. 

(C.2), the magnetic body couple mC is calculated as: 0 1 2(0,  0,  )mC H Mµ= − , where M2 is the 

magnetization component of the material along x2-coordinate (shown in Fig. C.1(a)). So in 

mC , only the component 3
mC (= 0 1 2H Mµ− ) is non-zero. By Eq. (C.8a), we have: 

21 12 0 1 2H Mσ σ µ− =                                                                                                     (C.9) 
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For variant II’s magnetization curve (M1−H1, where M1 is magnetization component along 

the magnetic field, shown in Fig. C.1(a)), we can make linear approximations as shown in Fig. 

1(b), where a is the magnetic susceptibility of variant II. Then we have: 

1 1

1 1

1

   (0 )
( )

        ( )

s

s
s

M
aH H

aM H
M

M H
a

 ≤ <= 
 ≥


 

                                                                                 (C.10) 

where Ms is the saturation magnetization. By the relation between M1 and M2 

( 2 2 2
1 2 sM M M+ = ), we have: 

2 2 2
1 1

2 1

1
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        0              ( )

s
s

s

M
M a H H

aM H
M

H
a

 − ≤ <= 
 ≥


                                                                    (C.11) 

With Eqs. (C.9) and (C.11), we obtain: 

2 2 2
0 1 1 1

21 12

1
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         0                      ( )

s
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M
H M a H H

a
M

H
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µ
σ σ
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 ≥


                                                           (C.12) 

The maximum (σ21−σ12) is obtained at the critical magnetic field Hc defined by: 

1

1

2 2 2
0 1 1

1

2 2 2 2
0 1 1

2
1

( )
0

2( )
0

c

c

s

H H s
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s

H H

H M a H
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H
aH M a H
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=

=

∂ −
=

∂ 

⇒ =

∂ −
> ∂ 

                                                            (C.13) 

Therefore, the maximum (σ21−σ12)max is: 

2
0

21 12 max( )
2

sM

a

µσ σ− =                                                                                               (C.14) 

For Ni-Mn-Ga ferromagnetic shape memory alloys, we have: Ms = 500,000 A/m, a = 1.1 

(Heczko, 2005). With these values, Eqs. (C.13) and (C.14) are calculated as: 

21 12 max 0( ) 0.14 MPa    at    0.4 Tcµ Hσ σ− = =                                                          (C.15) 
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Fig.  C.1. (a) Ni-Mn-Ga sample (single magnetic domain is assumed) in the magnetic field H1 along 

x1-coordinate. M is the magnetization vector in the sample; M1 and M2 are magnetization components 

respectively along x1- and x2-coordinate. (b) Linear approximation (dashed line) of the magnetization 

curve (solid line) for martensite variant II (with short axis along x2-coordinate). a is the magnetic 

susceptibility; Ms is the saturation magnetization. 

The twinning stress for type I twin boundary motion is around 1 ~ 2 MPa, which is almost 

ten times (σ21−σ12)max from the magnetic body couple. So the magnetic body couple has little 

influence on the type I twin boundary motion.  

For the type II twin boundary motion (Straka et al., 2011b), its twinning stress (0.05 ~ 0.3 

MPa) is comparable with (σ21−σ12)max. So the magnetic body couple might influence the type 

II twin boundary motion. However, long before reaching the critical magnetic field µ0Hc = 0.4 

T, the twin boundary motion (due to the magnetic anisotropic energy difference) has already 

completed at such a low twinning stress, and the material is composed of single martensite 

variant whose easy-axis of magnetization is along the magnetic field. Therefore, there is no 

magnetic couple in the material (magnetization and magnetic field are in the same direction, 

so the magnetic couple is zero by Eq. (C.2)).   

In conclusion, for both type I and II twin boundary motions in the magnetic field, there is 

no need to consider the effects of the magnetic body couple and the stress tensor of the 

material can be assumed to be symmetric. In literature, the magnetic body couples are always 

negligible in soft magnetic materials (zero magnetization without magnetic field) and only in 

hard magnets (large permanent magnetization) are considered the magnetic body couples 

(Eringen and Maugin, 1990; Hirsinger and Billardon, 1995).  
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