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Abstract

Ferromagnetic Shape Memory Alloys (FSMA) are prongscandidates for sensors and
actuators for their high-frequency response andelarversible strain. The aim of this
dissertation is the analysis of the magneto-mechahbiehaviors of FSMA. In this regard, we
study, both experimentally and theoretically, thartensite reorientation in FSMA. Firstly, a
2D/3D magneto-mechanical energy analysis is praposed incorporated into phase
diagrams for a graphic study of path-dependenteanaitie reorientation in FSMA under 3D
loadings. Criteria and material requirements falaoting reversible strain in cyclic loadings
are derived. The energy analysis predicts that FSMARD/3D configurations (multi-axial
stresses) has much more advantages than that codfiyuration, e.g., higher output stress
and more application flexibility. Secondly, to \ddie the predictions of the energy analysis,
2D experiments are performed on FSMA and resuitsalethat the intrinsic dissipation and
the transformation strain due to martensite retaigon are constant in all tested 2D stress
states. Moreover, preliminary results validate thia¢ output stress of FSMA in 2D
configuration (magnetic field with biaxial stresgeslarger than that in 1D configuration, and
the output stress can be increased by increasm@uRiliary stress. Finally, to predict the
magneto-mechanical behaviors of FSMA in generaltiranial loadings, a 3D constitutive
model is developed within the framework of thermuayics of irreversible processes. All
the martensite variants are considered and theeetye effect is also taken into account.
Model simulations agree well with all the existih®/2D experiments. The model is further
incorporated into finite element analysis for stagdythe non-linear bending behaviors of
FSMA beams. The sample-geometry effect and the rraht@anisotropic effect are

systematically investigated.

Keywords: Ferromagnetic shape memory alloys; Martensite eetation; Magneto-
mechanical energy analysis; Phase diagram; Muiéitagxperiments; Thermo-magneto-

mechanical behaviors; Three-dimensional thermodycemodel; Finite element analysis.
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This opening chapter presents the overview of #reomagnetic shape memory alloys, and the
research interest and outline of this dissertation.
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1.1. Overview of ferromagnetic shape memory alloys

1.1.1. Background

Ferromagnetic Shape Memory Alloys (FSMA) appeared aew kind of smart (active)
materials when a strain of 0.2% was first obseriredNi,MnGa single crystals under a
moderate magnetic field (< 1 T) in 1996 (Ullakkaakt 1996). The observed Magnetic-Field-
Induced Strain (MFIS) has the same order of madaitas the highest magnetostriction
obtained in giant magnetostrictive materials sueky ,Dyp 73 and Terfenol-D (Ullakko et
al., 1996). Later on, MFIS of FSMA has been incegla 6% ~ 10% in off-stoichiometric
single crystalline Ni-Mn-Ga alloys (Heczko et &Q00; Murray et al., 2000; Sozinov et al.,
2002; Tickle and James, 1999). The large strainF8MA is due to the martensite
reorientation (switching among different martensiaiants) driven by magnetic fields
(Chopra et al., 2000;ikhachev and Ullakko, 2000; Ullakko et al., 199@herefore, in
contrast to the conventional (traditional) temperidriven shape memory alloys, FSMA can
work in a large bandwidth up to 1~2 kHz (Henry &t &2002; Marioni et al., 2003;
Techapiesancharoenkij et al., 2009). The large rséve strain and the high-frequency
response are the main advantages of FSMA, whilemé@m limitations are brittleness (most
materials are single crystals), and small workitngss (usually smaller than 3 MPa, over this
stress level the MFIS will be prohibited (Ganomkt 2008; Gans et al., 2004; Heczko et al.,
2000; Karaca et al., 2006; Kiefer and Lagoudas,520@orito et al., 2007; Murray et al.,
2000)). Improving the working stress is one of objectives in this thesis. Details will be
provided in the following chapters.

The most studied FSMA is Ni-Mn-Ga alloys. Webstérak (1984) first studied the
martensitic transformations in polycrystalline,MnGa alloy. Zasimchuk et al. (1990) and
Martynov and Kokorin (1992) systematically inveatigd the crystal structure of the
martensitic phases in fiinGa. Ullakko et al. (1996) first reported a straimearly 0.2% in
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NioMnGa single crystal under magnetic field and arduseworldwide research interest in
FSMA. Besides the Ni-Mn-Ga alloys, other importaygpes of FSMA include Ni-Fe-Ga
based alloys (e.g., Hamilton et al., 2006; Li et a003; Oikawa et al., 2002; Sutou et al.,
2004b), Fe-based alloys such as Fe-Pd (e.g., Gali,2004; James and Wulttig, 1998; Liang
et al., 2003; Wada et al., 2003; Yamamoto et 8042 and Fe-Pt (e.g., Kakeshita et al., 2000;
Sakamoto et al., 2003), and Co-based alloys sucGaoahli-Al (e.g., Karaca et al., 2003;
Morito et al., 2002, 2010; Oikawa et al., 2001) &d-Ni-Ga (e.g., Morito et al., 2009;
Wauttig et al., 2001). These alloys usually havelgmaagnetic-field-induced strains than Ni-
Mn-Ga, but they may have other advantages, e.gRdralloys are more ductile than Ni-Mn-

Ga; Co-Ni-Al alloys contain no expensive elemesi(to et al., 2010).

1.1.2. Martensite reorientation

Depending on the temperature and the material ceitgpy the Ni-Mn-Ga single crystals
have three different martensitic phases: i.e.aggtnal five-layered modulated martensite
(5M), orthorhombic seven-layered modulated marten&iM) and tetragonal non-modulated
martensite (NMT) (Martynov and Kokorin, 1992). Magic-field-induced strain has been
observed in both 5M and 7M martensites, and 5M enaite is the most studied martensitic
phase in literature. For cubic to tetragonal (5Martensitic transformation in Ni-Mn-Ga,
there are three martensite variants (Tickle etl&@99; Webster et al., 1984; Zasimchuk et al.,
1990): V1, V2 and V3 with their short axasdxis) respectively parallel to the, y- andz
coordinate of the parent austenite lattice (see BigwWhich variant is energetically preferred
depends on the external loadings — mechanicals&tseand magnetic fields: e.g., V1 is
preferred by compression and magnetic field abbgordinate (see a summary in Fig. 1 for
other variants). So the magneto-mechanical loadtagsnduce the switching among variants

(i.e., martensite reorientation).
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Martensite a |:> <:|  —

variant 1 (V1)
a4

Cubic Austenite variant 2 (V2) ¢

y y O
Martensite Q H,
= variant 3 (V3) ¢ @ e
(4
a

Fig. 1. Schematic diagram of the austenite andrtheensite variants of ferromagnetic shape memory

g
a Martensite H,

alloys. ay denotes the length of the austenite latticandc respectively denote the lengths of the long
(a-axis) and shortctaxis) axes of the martensite lattice (the diffeebetweera andc is exaggerated
in the schematic diagramn the right of each variant, the compressigrafid the magnetic fieldH{

which energetically prefer this variant are shown.

For a brief introduction here, we show by a simpkample how a magnetic field can
induce strain in FSMA. The material in the initsdhte of martensite variant 2 is in a magnetic
field Hy alongx-coordinate (see the insert of Fig. 2(a) for thading condition and step) in
Fig. 2(b) for the initial state). With the increasé the magnetic field, the straiy, first
remains almost unchanged (sté€ps—~>@®) in &y~Hy curve of Fig. 2(a)), and then increases
significantly (3—@ in Fig. 2(a)) when the magnetic-field-favored reasite variant (i.e.,
V1) nucleates and grows via the motion of twin bianes (defined as the interface between

the martensite variants, s€@—® in Fig. 2(b)). The strainyy saturates when the material is

totally composed of V1 (see stép in Figs. 2(a) and 2(b)). Maximum strain due to i@asite

19



reorientation (V2»V1 switching) induced by the magnetic field is ardu6% for 5M

martensite.

(a)
6
®
.
S T ®
& ‘D_‘t
Syy }
y
X JT7777777777777 \®
0 O R—
J0) wH, (T 1
)
2~

Maximum strain :

g=(a-c)lc=6% Twin
\ boundary
Iy \ o \
v2 [}

ch c
© ° © ® ® ©

Fig. 2. Strain due to martensite reorientation aetliby a magnetic field. (a) Strain—magnetic field
curve. The loading condition is shown in the ins@) Schematic diagram of the micro-structural

evolutions (i.e., distributions of martensite vat& during magnetic loading. The evolutions are
simplified here just for illustration.
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1.1.3. Research interests in ferromagnetic shape mery alloys
After the previous general introduction of FSMA s interesting research topics are

summarized below:

m Theory and modeling

The magneto-mechanical behaviors of FSMA have hibeoretically studied and a
number of constitutive models have been proposegantitatively/qualitatively describe and
predict the material’'s behaviors from microscopmcnacroscopic scales. This thesis also
concerns the constitutive model of FSMA. A detaliégtature review of the existing models

will be provided in Chapter 4.

m Fundamental studies on FSMA

Martensite reorientation via twin boundary moti@ntihhe main mechanism in Magnetic-
Field-Induced Strain (MFIS). A high mobility of twiboundary is essential for MFIS.
Researches on the mechanism of twin boundary mamh the factors influencing the
mobility of twin boundary are under development.

Twin microstructures were directly observed (eGhulist et al., 2010b; Ge et al., 2004,
2006; Sullivan and Chopra, 2004), in order to attederstand the twin boundary motion on
the microscopic scale. Besides quasi-static loaitihge microscopic twin boundary motion in
high-frequency dynamic loadings were also studiggeementally and theoretically (e.g.,
Faran and Shilo, 2011; Lai et al., 2008). Recetlyew twin (Type Il, see (Jaswon and Dove,
1960) for the classification of twins) was obsenaul found to be much more mobile than
the conventional twin (Type I) (Sozinov et al., 20B5traka et al., 2010, 2011b). Studies on
the different microstructures of the two twins am how to produce Type Il twin in the

materials are still under way (e.g., Chulist et2012, 2013; Heczko et al., 2013).
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Factors influencing the mobility of the twin boungdnave also been studied. The effects
of temperature (e.g., Gavriljuk et al., 2003; Hexdnd Straka, 2003; Straka et al., 2006,
2011a, 2012), training (mechanical and magnetig).(€hmielus et al., 2008; Chulist et al.,
2010c; Straka et al., 2008), constraints (i.eatfon of the ends of the sample) (e.g., Chmielus
et al., 2008, 2011a) and surface conditions (eSdunielus et al.,, 2010a, 2011b) were
systematically investigated. One important findimgthe temperature effects is that the
twinning stress (related to the intrinsic dissipatof twin boundary motion) of Type | twin
increases linearly with decreasing temperature,lewlinat of Type Il is temperature

independent (Straka et al., 2012).

m Magneto-caloric effects

Magneto-caloric effects are associated with thehewonal entropy change or adiabatic
temperature change induced by an external magheitic(Marcos et al., 2002; Planes et al.,
2009). The magnetic refrigeration technology (mitilg the magneto-caloric effects) is a
potential replacement of the traditional gas corsgimn/expansion technology used today
(Pecharsky and Gschneider, 1997). Large entropygehanduced by magnetic field was
discovered in Ni-Mn-Ga alloys (e.g., Hu et al., 20Marcos et al., 2002; Pareti et al., 2003).
This entropy change is related to a first-orderpbed magneto-structural transition (i.e.,
ferromagnetic austenite> ferromagnetic martensite, with the saturation netigation of the
martensite larger than that of the austenite).

Besides the Ni-Mn-Ga alloys, the entropy changauded by magnetic field were also
discovered in Ni-Mn-X (X=In,Sn,Sb) alloys. The magn-field-induced martensitic
transformations have been directly observed (Kamwhal., 2006a, 2006b; Krenke et al.,
2007; Oikawa et al., 2006; Yu et al., 2007). Diéfer from Ni-Mn-Ga alloys whose two
structural phases (i.e., martensite and austear&)ferromagnetic, Ni-Mn-X (X=In,Sn,Sb)

alloys has ferromagnetic austenite and antiferroreig/paramagnetic martensite. So
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applying a magnetic field will induce the magnetstural transition from the
antiferromagnetic/paramagnetic martensite to tinemeagnetic austenite and cool down the
material (so-called inverse magneto-caloric efféghan et al., 2007; Krenke et al., 2007;
Moya et al., 2007). By this mechanism, meta-magnstiape memory effect (i.e., shape
recovery by magnetic-field-induced reverse martenstransformation from oriented
martensite to austenite) is discovered in Ni-MnXX= In, Sn) alloys (Kainuma et al., 2006a,
2006b). Since its discovery (Sutou et al., 200Mi)Mn-X (X=In,Sn,Sb) seems to be a
potential alternative to Ni-Mn-Ga for two importargasons: (1) it is cheaper (without the
expensive element Ga), and (2) it has much largaking stress (as large as 100 MPa
predicted by Kainuma et al. (2006b)). However, tuluce the reverse martensitic
transformation, a strong magnetic field is requird., even for free-stress state, the required

magnetic field should be larger than 3 T (Kainurhalge 2006a, 2006b; Krenke et al., 2007).

m Novel structures

Single crystalline FSMA shows large Magnetic-Figlduced Strain (MFIS), but it is
usually expensive, brittle and difficult to machirfeolycrystalline FSMA is a little more
ductile, but it has little MFIS (Jeong et al.,, 2003llakko et al., 2001) due to strain
incompatibilities at grain boundaries. To overcothese problems, several solutions have
been proposed: favorably textured FSMA polycrystalg., Chulist et al., 2010a; Gaitzsch et
al., 2007, 2009), polymer composites with FSMA igkes (e.g., Feuchtwanger et al., 2003;
Hosoda et al., 2004; Mahendran et al., 2011), pptyalline FSMA foams (e.g.,
Boonyongmaneerat et al., 2007; Chmielus et al.0BpZhang et al., 2011), etc. Moreover,
for the potential applications of FSMA in micro-efe®-mechanical systems, the FSMA
micropillars and thin films have been intenselyastigated (e.g., Auernhammer et al., 2008;
Dong et al., 2004; Heczko et al., 2008; Ohtsukalgt2007, 2008; Reinhold et al., 2009;

Thomas et al., 2008 among many others).

23



m Applications

Linear actuators/motors (motion in a straight lit@y., Gauthier et al., 2006; Suorsa et al.,
2002; Tellinen et al., 2002) using the materiatgigerty of magnetic-field-induced martensite
reorientation (accompanied by large strain chamgeg the first applications of FSMA. Later
on, research interests have been drawn to thec&iom of micro- and nano- actuators (e.g.,
Khelfaoui et al., 2008; Kohl et al., 2010). Bendiagtuators (e.g., Kohl et al., 2004, 2007)
were also proposed based on another mechanisnyirapphe gradient of a magnetic field
introduces the attractive or repulsive force, whittluce the martensite reorientation in the
FSMA beam.

Besides actuators, sensors and energy harvestsesl lom the inverse effect of strain-
induced magnetization change have been developgd Karaman et al., 2007; Kohl et al.,
2013; Stephan et al., 2011; Suorsa et al., 20@hpihg properties of the material have also
been investigated for the possibility of damperligpgons (e.g., Wang et al., 2006; Zeng and

al., 2010).

1.2. Research objectives and outline of dissertatio

The material studied in this dissertation is thesmimportant and the most utilized
ferromagnetic shape memory alloys — single cryis@lNi-Mn-Ga alloys. The research is
focused on the theoretical and experimental studfienartensite reorientation in Ni-Mn-Ga
(5M martensite), and on developing a three-dimerai@onstitutive model to predict the
magneto-mechanical behaviors of Ni-Mn-Ga in genleading conditions.

The remaining parts of the dissertation are orgahias follows: Chapter 2 presents an
energy analysis of martensite reorientation und@¥BR loadings, in order to demonstrate the

advantages of using the materials in multi-axiadiog conditions and to verify the necessity
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of developing a 3D constitutive model. In Chapte2B mechanical and magneto-mechanical

experiments are reported, so as to study the nsteeneorientation via twin boundary motion

in 2D conditions and to validate the advantagessaoig the materials in multi-axial loadings.

Chapter 4 is devoted to the development of a 3Dstdotive model of the material’s

magneto-mechanical behaviors. A general conclusipnovided in Chapter 5.

1.3. Notations

The main notations used in the dissertation aranvsanzed in Table 1.

Table 1. Notation used in the dissertation.

Notation Meaning Unit or Expression
or Value
a, av Length of long axis of tetragonal martensite umit c nm
ag, A Length of cubic austenite unit cell nm
C, Gy Length of short axis of tetragonal martensite galt nm
HH Magnetic field strength At
Hy Magnetic field along-coordinate of austenite lattice 0
Ky Magneto-crystalline anisotropic energy -m3
M,M Magnetization vector At
Ms Saturation magnetization !
My Magnetization along-coordinate of austenite lattice !
MFIS Magnetic-Field-Induced Strain
MSMA Magnetic Shape Memory Alloys
T Absolute temperature K
V1, x-variant martensite variant 1
V2, y-variant martensite variant 2
V3 martensite variant 3
) Volume fraction of martensite variant 1
y2) Volume fraction of martensite variant 2
Z Volume fraction of martensite variant 3
Z12 Volume-fraction transformation between variant @l an
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Notation Meaning Unit or Expression
or Value
o3 Volume-fraction transformation between variant @ 8n
Z31 Volume-fraction transformation between variant 8 an
£ Strain tensor
&0 Strain change due to martensite reorientation a—c)(ay
€a 62 Strain change aag)/ag
&c, €1 Strain change a—C)/ay
Lo Vacuum permeability 4nx107 (V-sAtm?)
g Stress tensor Pa
Otws Otwinning Twinning stress (driving force for twin boundarytion) Pa
Oxxs Oxs 01 Normal stress along/x;-coordinate of austenite lattice Pa
Oyy, Oy, 02 Normal stress along/x,-coordinate of austenite lattice Pa
Oz O3, O3 Normal stress along/xs;-coordinate of austenite lattice Pa
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W(@’& 2 Energy analysis of martensite reorientation

under multi-axial magneto-mechanical loadings
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2.1.3. Phase diagrams and variant switching ireckfit loading paths 35
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2.2. Reversible strain criteria of ferromagneti@sh memory alloys under cyclic 3D magneto-
mechanical loadings 50
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2.2.2. Energy Analysis and phase diagrams 52

2.2.3. Criterion for obtaining reversible strairden cyclic magneto-mechanical loadings 61

2.2.4. Discussions 72

2.2.5. Conclusions 73

2.3. Chapter conclusion 74

Most existing experiments investigating the martengriants reorientation (switching) of
Ferromagnetic Shape Memory Alloys (FSMA) are inimpée 1D condition: an axial compressive
stress and a transverse magnetic field. To obta&id-ihduced variant switching, however, the
compressive stress (output stress) is limited lynall blocking stress (< 3 MPa). To overcome the
stress limit, we suggest, in the first part of tbimpter, using the materials in two-dimension&)(2
configurations: two (axial and transverse) compwesstresses and a magnetic field. Based on a 2D
magneto-mechanical energy analysis, it is found dhdy the difference between the two stresses is
limited; each of the two stresses can be largan tha blocking stress. The energy analysis is also
incorporated into the field-stress phase diagramsluding hysteretic effect) to study the variant
switching in different loading paths: rotating/nmtating field-induced strain and field-assisted
superelasticity. In the second part, the 2D magnetohanical energy analysis is extended to 3D and
then incorporated into a phase diagram in termslesfiatoric stresses (including mechanical and
magneto- stresses) to study the path-dependentefbiis) martensite reorientation in FSMA under
3D cyclic loadings. Based on the phase diagram ldaepgraph), general criteria for obtaining
reversible strain under cyclic magneto-mechaniaadings are derived, which provide basic
guidelines for FSMA'’s applications under multi-adXizadings.
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2.1. 2D analysis to improve the output stress in f@magnetic shape

memory alloys

2.1.1. Introduction

Ferromagnetic shape memory alloys (FSMA) are gaottlicdlates for actuators for their
high-frequency response and large Magnetic-Fiethlxted Strain (MFIS) (James and Wuttig,
1998; Murray et al., 2000; Straka and Heczko, 200&kko et al., 1996). MFIS is caused by
the martensite variant reorientation (variant skig) in FSMA. In literature, there are two
ways for obtaining magnetic-field induced variawitshing: (i) changing the magnitude of a
magnetic field with a fixed direction (non-rotatifigld) and (ii) changing the magnetic-field
direction with a fixed magnitude (rotating magnefield). Although most existing
experiments belong to the loading method (i), méth) has advantages in some cases, for
example in high-speed cyclic loadings (Boonyongreaaieet al., 2007), sample-training
(Chmielus et al., 2008), fatigue tests (Millneakt 2002) and some special actuators (Ganor
et al.,, 2009; Suorsa et al., 2002). Moreover, atirng field can induce reversible variant
switching (i.e. reversible strain) without the a$since of mechanical stresses; but non-
rotating field cannot solely induce reversible isti@/uliner et al., 2002).

Reversible variant switching (the two variants peically switch to each other in cyclic
loadings) is important in smart devices like aamt Usually, a compressive mechanical
stress is applied on FSMA (Fig. 3(a)) to help tba-motating field induce the reversible strain,
where the stress and the field are perpendiculaath other. When the FSMA works as an
actuator, the stress represents the actuatiors fites output working stress). However, the
working stress is limited by a small blocking strds 3 MPa depending on the magnetic
anisotropic energy), over which the MFIS is protadi(Ganor et al., 2008; Gans et al., 2004,

Heczko et al., 2000; Karaca et al., 2006; Kiefed &agoudas, 2005; Morito et al., 2007;
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Murray et al., 2000). From energy point of viewisipossible to increase the working stress by
applying a constant auxiliary force on the FSMAamother direction (Fig. 1(b)). In literature,
there are no systematic experiments or modelinghigr two-dimensional (2D) case (under
two compressive stresses and a rotating/non-rgtategnetic field). In this section, based on a
2D energy model on the variant switching, we dertrates that only the difference between
the two stresses is limited by the magnetic arepatrenergy and the hysteretic effect — non-
zero twinning stress (Eqg. (14) for rotating fielddaEq. (20) for non-rotating field). i.e., the

working stresses can be larger than the blockimegsin 2D configurations.

Working stress O, Working stress O,

Magnetic field A - Magnetic field [ 77 =77

FSMA O, FSMA x
Assistant stress

L, x (@) L x (b)

Fig. 3. FSMA under a single compressive stresargd)two compressive stresses (b).

v

Several models have been proposed in literaturéechwére roughly classified into two
categories: (1) micromagnetics models (e.g., Cmwmet al., 2004; James and Wuttig, 1998;
Jin, 2009; Kiefer and Lagoudas, 2005, 2009; Pauhlgt2007; Tickle et al., 1999) can
computationally determine microstructural evolugp2) energy models (e.g., Heczko and
Straka, 2003; Heczko et al., 2006; Likhachev anthkib, 2000; Likhachev et al., 2004;
Murray et al., 2001; Straka et al., 2006) focusoamgmacroscopic variables (e.g. switching
stress/magnetic-field) can provide useful applaratjuidelines (e.g. criterion of the existence
of reversible actuation of FSMA in cyclic loadings)here are also some models (e.g.,

Marioni et al., 2002; O’Handley, 1998) in betwedre tabove two categories, which can

29



provide analytical expressions connecting macrasoggriables to the averaged (or effective)
microstructures. In this section, an energy mosi@iroposed to consider the 5M (five-layered
modulated) martensite variant switching in Ni-Mn-Ga the specimen transfers abruptly
from one tetragonal-variant state to another (the discontinuous model in (Murray et al.,
2001) ). In the 2D configuration (Fig. 4), we comgthe energies of the two variants (I and II)
under two compressive stresses and a magnetic &ietddraw the phase diagrams (Fig. 7 and
Fig. 10) (including hysteretic effects) to studeg tariant switching in different loading paths:

rotating/non-rotating field-induced strain and diessisted superelasticity (Fig. 8 and Fig. 11).

2.1.2. Energy analysis
2.1.2.1. Energy formulation

In the 2D configuration, the FSMA specimen is assdito be composed of single variant (I
or Il in Fig. 4). The energy of each variant (whishassumed to consist of a single magnetic
domain) includes the mechanical poterigic.nand the magnetic ener&yag (Zeeman energy
and the magnetic anisotropic energy) (Heczko et28102; O’'Handley, 1998; Straka and
Heczko, 2003b).

Emech— A% =-0 xg‘l to yBZ (13.)

Emech—vz =-0 y|1‘1+0-x|1‘2 (1b)

where &, = v s 0, 52:&_ B«

aA a‘A
E g = K, 3in° 6, — HM [Eos@r - 6, ) (2a)
E g vo = K BIM 6, H M Et:osg—a—e2 ) (2b)
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wherea, is the length of the austenite lattieg; andcy are the lengths of the long (a-axis) and
short (c-axis) axes of the martensite latticas the angle between the magnetic field and
coordinate)K,, H andM are the uniaxial magnetic anisotropic energy,ttagnitudes of the
applied magnetic field (the unit is T) and the sation magnetization, respectively, andg,

are the equilibrium angles between the magnetizatiod the c-axis of the two variants,
respectively (see the inserts in Figs. 5 and 6¢. Vidlues of the compressive stressgsi(dsy)

are positive here. Without losing generality, hexe ignore the effects of elastic energy and
magnetostriction, which will be discussed in sutise 2.1.4. The energy difference

(normalized byK,) between the two variants is expressed as:

EVl_ E\/Z - (Emech—v.l.+ Emag V)_(Emeeh 2/+ E magz)

K, K, 3)

:—(ay —ax) (£, +(sin261—sir1262)— HM EECOSQ’—@ b CO%_C"—@})

K K

u

whereep= e1teo=(am - cm)/aa. EQ. (3) indicates the energy preference of weewariants in the
2D configurations. Besides the material properied the boundary conditions,(M, K, H,
a, ox, anday), the equilibrium magnetization directiors @ndé,) are needed to calculate the

energy difference.

Variant 1 Variant I1
(c-axis along x-coordinate) (c-axis along y-coordinate)
g, g,
H H
M,
/ o cyl 04
o, a T (O (O T (O

v )
/[ ) ,[ 3 o,
X 0}’ X

Fig. 4. The tetragonal martensite variants underdempressive stresses and a magnetic field.
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2.1.2.2. Magnetization directions#; and 6,)
Usually, the equilibrium magnetization directionnche determined by minimizing the

magnetic energy (Mullner et al., 2002; Sasso ¢2@ll0) as:

O - aEmag—\/l
g
aEmag—VZ
a6,

=K, [$in %, - H M Csingr -4, )
4)
0=

=K, (3in 2, —H M [Bing—a—é’zj

Normalized byK,, Eq. (4) changes to:

HM

sin2g - " (Bing-6,)=0
5 (5)
H M [Bing—a—ﬁz )= C

sin2g, -

u

Equation (5) containingin functions generally has no analytical solutionsept some special
conditions. In the following, the analytical andnmerical solutions are discussed in two
magnetic loadings: a rotating field (with a fixechgmitudeH) and a non-rotating field (with
fixed directiona). Because of the symmetry of the system, we oeidnto study the angle

rangea U [0, n/2].

Rotating magnetic field (with fixed field magnituég

In this case, Eq. (5) has some analytical solutaans

M sin2 =0 =6=0
If HK—zo, (6a)
u sin28,=0 =6,=C
6=3
i HKEM -1, (6b)
! ml2-a
6, =
3
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HM

If >>1

, (6c)

Equation (6) means that the magnetization is aliregc-axis (which is the easy-axis of

magnetization) when the applied field is Wea|_k||—<w=O); whenH is strong @» 1),

the magnetization is along the field; for otheresaghe magnetization is in between c-axis

and the field. The dependence of the magnetizatioentations #; and 6,) on the field

directiona and the field magnitudglKﬂ can be numerically determined (Fig. 5). Similar

calculations of the magnetizations in a single nedigrdomain of a single variant (Millner et
al., 2002; Sasso et al., 2010) and in twin strestwf different specimen shapes (platelet and

rod) with demagnetization (Chernenko et al., 2@@26) be found in literature.

Variant I Variant IT
(c-axis along x-coordinate) (c-axis along v-coordinate)
H|
H g M
2
Y Z)
1 e (2, | " S B S
Magnetization 8, Magnetization
angle 6, ¥ angle &, —_—
15 15 Uy u

0.5

Angle of magnetic field a Angle of magnetic field a

Fig. 5. The dependence of the magnetization doest(in variant | and Il) on the field direction at
different field magnitudes.
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Non-rotating magnetic field (with fixed field diréon «)

With basic knowledge of the magnetization in FSMArtansite variants, we can obtain

the analytical solutions of Eq. (5) whens equal to 0 ort/2 as:

sin@DEZcos?ﬁ%j: 0 = =0 whenHEIM >
u u 7a
If a=0, (7a)
g,=arc sin when & HM <
, H M 2K, 2K,
cosd, 25|n92—K— =0= H M
u 6,=ml2 when >1
2K,
g =arc sin when OsH[Ms:
. HM 2K, 2K,
cosg, [] 2sirg, - " =0= M
u 6 =ml2 when >1
2K, (7b)
If a:Z—T,
2
sin62EE20056’2+%j= 0 = 6,=0 WhengliM >

For other cases (i.e. O« <n/2), solutions of Eq. (5) can be determined nunadlsic The
dependence of the magnetization directiaghsagdd,) on the field magnitudél at different
field directions is showmn Fig. 6. If the field direction coincides with éhc-axis, the
magnetization is always along the c-axis (no mdttev large the field magnitude is). If they
do not coincide, the magnetization direction ratdtem the c-axis to the field direction when

M
K

u

the field magnitude increases from zero to a laajee (g >1).

With the magnetization directions, the energy dédfee between the two variants (Eq.(3))
can be calculated and incorporated into the figless phase diagrams to study the variant

switching in different loading paths with the catesiation of hysteresis.
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Variant I (c-axis along x-coordinate) Variant IT (c-axis along y-coordinate)

H
H o, M
M\& = a
a, éi ______ p“{ K___ I

91
N y — A *
Magnetization ‘[ . [Magnetization ayy
angle 8, n angle &, X
15 a=m/2 13 a=0

Fig. 6. The dependence of the magnetization doest{in variant | and 1) on the field magnitude at

different field directions.

2.1.3. Phase diagrams and variant switching in diérent loading paths
Substituting Egs. (6) and (7) into Eq. (3), we caltulate the energy difference of the two
variants and plot the phase diagrams (Figs. 7,08arid 11) to study the variant-switching

induced by the rotating and non-rotating magnegicl$, respectively.

2.1.3.1. Rotating-field-induced variant switching

The dimensionless paramete'@) characterizes three ranges of the field magnitude

(low H, mediumH and largeH) where the energy difference between the two w&sids

obtained by substituting Eq. (6) into Eq. (3) as:

M o~ O, EVl_ EVZ = (JY_JX) (8&)
K K./&

u u

when
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when

HM_, Ea-B,_(9,79) §sirE”—2”j (8b)
K K& 2

u u

M s 1, By~ B, —(J _JX)— cos(@ (8¢c)
K K,/&

u u

when

wherea 00[0,7/2] . From the symmetry of the system, the energy wiffee can be easily
obtained foraO[n/2, 2n]: for low and largeH, the forms of Eqs. (8a) and (8c) remain

unchanged; for mediufd, Eq. (8b) changes to:

(9,-0.) 3 (2
K,/ +§CO{?) @Dtz
By~ Euy _ (Uy‘ax)_ﬁsin(ﬂﬁj o 0[7,37 13 (8d)
K, K,/& 2 6 3
(UV_JX)_§' n_2
e 2sm(6 3) aO[37/2, 2]

Equation (8) indicates the field-direction) (dependence of the energy difference, which can
be used to draw the phase diagrams in terms dcfttesses and the field directiaras shown

in Fig. 7. The figures on the left-hand side/rignd side are without/with the hysteretic

twmnlng —

effect (normalized twinning stres&T 0.5 is assumed in Figs. 7(b), 7(d) and 7(f)). The
u 0

solid curves in Figs. 7(a), 7(c) and 7(e) are eguargy curves WithEVlK_iE"=O. The

u

equal-energy curves define the borders of the tgions for stable states of variant | and Il

when Evy E"2<O( Evy E"2>O) variant | (variant IlI) is energetically prefedre

Considering the hysteretic effect where twinningss is non-zero, the equal-energy curves
are split into the switching thresholdsXll and II-=>1 switching thresholds in Figs. 7(b), 7(d)
and 7(f) ). The region between the switching thoéd$his meta-stable, i.e., the variant state in

this region depends on the loading history.
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H-M
2o (@) =—-0
K./) ,

1
’ o . Equal-energy R
. VariantIT _° 4 o i SWitching threshold
I T curve § t 26, 1211
0,2 4 Meta-stable region 1 —=F
0 R TR )
1 a
0,2 { 1 2 3 4 5) 6 7
0,4 1 1
,§ [—— Switching threshold
0’8 A o1

region

VariantT -~ N\

2 Variant I

Fig. 7. Phase diagrams in terms of the stresseshenchagnetic field directioru) at different field
magnitudes: (HM)/ K, =0 ((a),(b)), (HIM)/K,=1 ((c),(d)), (HIM)/K,>1 ((e).(f)). The
figures on the left-hand side (on the right-hamtk¥yare without (with) hysteretic effect.

In Figs. 7(a) and 7(b) (when the applied fieldaw | (H M)/ K, =0), the variant state is
governed only by the mechanical stresqeg, ¢ o0,)/(K,/&,)). WhenH is medium or large

(HM)/K,=1or (HIM)/K,>1 in Figs. 7(c)-(f)), the rotation of the magnetield

(changinga) can lead to the variant switching. For examplg. B shows the variant-
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switching induced by a largd ((H M)/ K, >1). In the loading path “R1” (a constant-rate

rotating field withoy = 0y), the two variants switch to each other periodycahd the time
fractions of the two variants in a loading cycle agual due to the symmetry of the system. If
ay> oy (Or oy < oy), variant Il (or variant I) occupies a larger tifmaction in a loading cycle as
shown in the loading path “R2” (or “R3"). That maame can change the time fractions of the

two variants in a cycle by properly setting the tatoesses. Additionally, three important

features are demonstrated by the phase diagraoii@asd.

(a) Phase diagram at A ME >>1 (b) Magnetic-field-assisted superelasticity

Loading path S1 G- Gy

Variant I1

""" TTSNTITE ﬂ[

Strain ('5‘,!71')

Variant I

-2
(¢} Rotating-magunetic-field-induced reversible variant switching
Strain (£,,) Frarineling a,
3 3 g path R1 | H
vl ~L VL N i
o v [t L

Gray O] *rotation angle o

Strain (£,,)

o1
1 Loading path R2 g, [
vl vl vl A e
o." IR “a,

W S

_ =i [ "ratation angle o
Stralzn (g3 Loading path R3

a7 7
K . - g, <0, ‘L -
vl vl vI J % _ -~
o, "o,
¥ =

=

a.

o1y [ |t [t

Ora  Opgy rotation angle o a

Fig. 8. Rotating-field-induced strain (c) and figssisted superelasticity (b) derived from the
stresses—field-direction phase diagram (a). Theerdiht loading paths (R1, R2 and R3 for rotating-

field-induced strain and S1 for field-assisted salassticity) are indicated on the phase diagram (a)
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Switching angles and time fractions of the variants

Under a constant-rate rotating fieldr£0 and (HM)/K,>1), the FSMA specimen
(initially in the state of variant | at = 0) switches to variant Il at the angie_, , and back to
variant | at the angle, , (see Fig. 8). Such switching processes will beeaggd in the

following rotation, so we just study the first secycle (i.e. the rotating angle D[O,ﬂ]).

With the hysteretic effecfEVlK B - Ktw';“'"g ) and Eq. (8c), the two typical switching angles

u

can be determined as

1 0, Ouinning -
O’lﬁ” - arCCOS/ y X twinning ) (9)
\K le, K,l&,
_1 =0, O ining -
a, =1t arCCOe/ Y X 4  twinning ‘ (10)

K, e, K, &,

For the loading path “R1” in Fig. 8¢ = ox and Ktw';“;g = 0.5), the switching angles
0

u

determined by Eqg. (9) and (10) are; , =60° and a, , =150°, which agree with the
experimental observations (Mullner et al., 200Rjs hoted that the specimen is in the state of

variant | at the angle range cﬁD,a, i ]U[a',, iy 7T] . So the time fractiog, of variant | in the

constant-rate rotation cycle is:
_1
4 -;(Cﬁ ~ i +(7T_ ay )) (11)

With Egs. (9) and (10), Eq.(11) becomes:

g.—0, O g, 0. 0. .
Zl _i arCCOCI vy XX _ 7 twinning ).|_ arCCOS/W ><><+ twinning ) (12)
21T Ku/ K,/& kulgo K,/&,

Equation (12) is plotted in Fig. 9 to show the dejence of the time fraction of variant | on

. g, -0 _— O pinmi .
the applied stresse =) and the twinning stress{—— ). Wheno, =0, , the time
/ / Y X
u ‘90 u ‘90
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fraction of variant | is always the same as thatvariant Il =0.5), due to the symmetry of

the system. If variant | occupies a larger timeticn than variant [14,>0.5), Eq.(12) predicts:

o,<0, (13)
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Fig. 9. The dependence of the time fractmmof variant | on the applied stresses and the hgtite
effect (twinning stress).

From Fig. 9, it is also noted that, for obtainimyersible variant switching (two variants

switch to each other in cyclic loadings, i.B.,is not equal to 1 or 0), the stress difference

g, —0, ] . ' | N |
(—Ky / ) must be in a certain range, which depends orhyiseeretic effect “”';”'”9 ). This
&

u 0 ugo

issue is related to the second feature includékdarphase diagrams as follows.

Criterion of reversible variant switching

If oy >> oy Or oy << oy, the rotating field cannot induce reversible shiitg because the
loading path cannot intersect the two switchingsholds in the phase diagram. The criterion

for obtaining the rotating-field-induced reversiBlgitching is
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—1- Utwinning < ay _ax <1- Utwinning (14)
K,/& K./& K,/&,

The criterion (EqQ. (14)) is possible only when

ag. . .
1-—"" > 0= K, /g, >0,

winnin 15
/ 80 g ( )

Equation (15) is the well-known basic requiremehttlee Magnetic-Field-Induced-Strain
(MFIS) in FSMA (Heczko and Straka, 2003; Soderhedrgl., 2005).

If only one mechanical stress is applied (ig.# 0 andoy = 0), the magnitude of the
working stressd) can be estimated by expressing Eq. (14) as:

g O inni
y Sl_ twinning <l (16)
K, /& K,/ &

u

It is noted thatowinning Ku @and g have positive values. Eq. (16) means, if the single
compressive stressj is larger tharK,/eq (so called blocking stress (Heczko et al., 2000)),
the magnetic field cannot induce the reversibleiavar switching. From the existing
experiments Ky /g is less than 3 MPa (Heczko et al.,, 2000, 2002;r8uret al., 2000).
Therefore, the working stresg (or the output stress limit of FSMA actuators)asv. By
contrast, in obtaining the reversible variant shiitg in 2D configurations (botk, andoy are
non-zero), the output stresgcan be larger thal,/epas long as these two stresses satisfy the

criterion of Eq. (14).

Equation (14) is derived for the case of a largdi.é., H M

u

>1). With the same

approach, the criterion for other cases can be ir@ata analytically or numerically
(graphically). For example, the criterion for tlegating-field-induced reversible switching for

H M

mediumH ( =1) is obtained (by substituting=n/2 into Eq. (8b) and using phase

u

diagram Fig. 7(d)) as:
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twinning (17)
1€,

_ §_0-twinning <Uy—UX<_3_U
4 K,lg,) K,lg, 4 K

u

Field-assisted superelasticity

From the phase diagram, we can study not only itd-induced variant switching, but
also the field-assisted superelasticity (anothgrartant feature of FSMA), as shown in the
loading path “S1” in Fig. 8. It is noted that, lub=s the material propertigs€,( M, owinning and
€0), the switching stresses (the stresses triggehagariant switching-»1l or I1->1) depend
on the magnetic field. In other words, the switchstresses of the superelasticity can be
changed by properly setting the field directiwrand the field magnitudel. For a largeH

H M > 1), the switching stresses for variartll and 11->1 can be determined with Eq. (8c)

(

u

and the phase diagram in Fig. 8:

g, —0 ag. . .
( y xj :COS(ZY)'F twinning
11

K, /& K,/&
(18a)
g,-0 o..
— =cos(2r - —me
Kal& ), K, /&
For example in loading path “S1” in Fig. 8 € 0), the switching stresses are:
(Jy _/Jj :1+UtL;nmg
K./& K,/&
o ° (18h)

Iy~ | —q_Fwiming
K, /& . K,/ &

2.1.3.2. Non-rotating-field-induced variant switching

Substituting Eqg. (7) into Eq. (3), we obtain themy difference with a fixed.
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(0,-0,) (HMY HmM
N _

K /e, | 2K, K,
(UY_UX)_
K,/&

(0,-0) (HM Y, Hm
K /e, | 2K, K,
(Oy—dx) +1

K,/é&

(19a)

(19b)

With these energy expressions, the phase diagranterins of the stresses and the field

magnitudeH are plotted in Fig. 10 (where = 0). The non-rotating-field induced variant

switching can be demonstrated by the phase diagFagn 11). Similarly, some important

features can be obtained from the phase diagram.

Oy-Ox . ~

1 B
d s o,
1.5 "

=

o
)

Variant IT

(@) a=0

o
SN SRR - NP - N S

'
23

N
o
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Oy Oy N NG T N N N

15

0.5,/

~.._ Variant IT

~. (b) a=0

Meta-stable region

+ 2 1inning

xcem)

H

-0.51"

v / Variant I

a5t

(K,/M)

Fig. 10. Phase diagrams in terms of the stressethammagnetic field magnitude at the field directi

0=0. The figure on the left-hand side (on the righid side) is without (with) hysteretic effect.
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(a) Phase diagram at o=0 | | (b) Magnetic-field-assisted superelasticity |

Oy —_G; Loading path 51 Loading path 52
(RHISU) Variant IT w “G_‘_\'_Ij
iy i 2 winning || |E =) K,z

(Ky/29) vII —»

r
H \-ll — VI
1 vl| =
> Strain (811'} Strain (E.‘“,)
T i i
Variant I K,/
05= arian (K,/M)
=

| (c) Non-rotating-field induced reversible variant switching |

St]“;lin (&) Loading path N1 o,
vl
c\'_c::04 a, _-—>H
S g K H (Ki/zg) o %
0 i 0D
Str‘;'m (zy) Loading path N2 o,
vl 6. -6, ]
— D SR ;
K, /s - U:r ._ H
o, |t B (Ks/c0) oy il
0 1 " &S ¥

Fig. 11. Non-rotating-field induced strain (c) afield-assisted superelasticity (b) derived from the
stresses—field-magnitude phase diagram (a). Tlherelift loading paths (N1 and N2 for non-rotating-

field induced strain; S1 and S2 for field-assistagerelasticity) are indicated on the phase diadgegm

Criterion of reversible variant switching

The criterion of setting stresses for obtaining tion-rotating-field induced reversible
switching @=0) is:

g,

twinning < Uy_ax o

< < 1— — twinning (20)
K, /& K, /&, K,/&,

This criterion is similar to (Heczko and StrakaPp20pHeczko et al., 2006; O’Handley, 1998)
where a single stress is used. The solutiomett) to Eq. (20) exists only when the material’'s

properties satisfy:

atwinning < _thinning K /5 > 20
u 0

. 21
Ko/ & K./ & g &)
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The condition in Eq. (21) was also pointed outHie¢zko, 2005; Straka and Heczko, 2005). It
is noted that the requirement of the material priogeeis stricter in the non-rotating field (Eq.
(21)) than in the rotating field (Eqg. (15)). In ethwords, for FSMA with the material
properties owinnig < Ku/€o < 2owinnig, it IS the rotating field rather than non-rotatifrgld that

can induce reversible variant switching.

Switching magnetic field

It is also noted that the switching fields for et 2> 11 (or 11>1) depend on the stresses
and the hysteretic effect. They can be obtaineth fEx. (19a) and the phase diagram with

hysteretic effect (twinning stress) as:
H - 2 1_ 1_ Jy - Ux + atwinning
KoM, K./& K,/é&
H — 2 1_ 1_ Uy - Ux _ a-twinning
KoM K,/& K,/&

g,-0,

(22a)

g,—0,
For example, wher~——=> =0.5 and
K,/& o &

=0.25 (loading path “N2” in Fig. 11), the

switching fields are:

H 1
)

ST e

u

(22b)

Field-assisted superelasticity

The switching stresses for the field-assisted slgsticity depend on the field magnitude
and the hysteretic effect. With Eq. (19a) and thase diagram (Fig. 11), the switching stresses

can be determined as:
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2
HDM_ HDM +0-twinning OSH[MSZ
K, 2K, K, /&, K,
(ay _UX)
Ay X = (23a)
K, /& o
I =1 -
1+ twinning H [n\/l > 2
K, /& K,
2
HDM_ H M _a-twinning OSHEMSZ
K, 2K, K, /& K,
(Jv _JX)
- (23b)
K, /& . o
- 1- twinning H M >2
K,/& K,
. . . . g, —0g, g,—0,
For example in the loading path “S2” in Fig. 11%/%=0.5 and — =0.25), the
u go u 0
switching stress are:
_(av _GX)_
—r =1 (24a)
K,/&
L -
o o )]
( y X) =l 24(3)
K. /& i 2
HM . PR o .
For a largeH ( " >2, loading path “S1” in Fig. 11), the switching sses in Eq. (23) are

u

the same as Eq. (18b) since the loading path 1$Fig. 11 is the same as “S1” in Fig. 8.

Unified description of switching fields/stressesl axperimental verification

Since both the switching field (Eq. (22a) for figtdluced switching) and switching stress

(Eq. (23) for field-assisted superelasticity) astedmined based on the energy difference (Eq.

. - Oinni . - . :
(19a)) and the hysteretic eﬁecﬁa% =i$), there is a unified expression connecting
u ‘90

u

these magneto-mechanical parameters:
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1 H>2
where 5=(Jy_ix)/$a“”‘""‘"g and F=—" . This formula of the switching parameters
u ‘90 u

(switching fields/stresses) can be compared wighetkisting experimentsy(#0 andoy =0) of
the field-induced switching and the field-assissegberelasticity in Fig. 12, where the solid

line represents the analytic solution (Eg. (25)] #re points are experimental measurements.

It is seen that the theoretical prediction agretd tie experiments.

=== Analytic solution (Eq.(25))
O MFIS in Murray et al. (2000) -—
B MFIS in Heczko et al. (2000)

1 MFIS in Heczko (2005)

[l MFIS in Karaca et al. (2006)

O Superelasticity in Chernenko et al. (2004)
@ Superelasticity in Heczko (2005)

(6, = Orpinning) | K,/ €,)  (switching: I-TI)
(6, + Gpyinming) | (K, &) (switching: II—T)

(o] Superelasticity in Karaca et al. (2006)

1 S S S S RS S I
04 1 2 3

g
(H-M) /K,
Fig. 12. Comparison between the analytic solutibsvatching fields/stresses and the experiments of
magnetic field-induced strain (MFIS) and field-assd superelasticity.

2.1.4. Discussions

Although the analytical results obtained abovearly for some special conditions (e.g.,

H M >1and H

u u

=1 for the rotating field andx = O for the non-rotating field), the
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approach (the energy preference and the phaseadiawith hysteretic effect) can give
numerical solutions for other 2D cases. The matwabf this section is to provide a simple
approach to understand and predict the main featofethe variant switching in 2D

configurations. Although the experimental implenagioin of the 2D configurations (Fig. 3(b))
will be more complicated than that of the simpladimg (Fig. 3(a)), the 2D configurations
have many potential applications for their advaesachigher working stress, controllable
switching field/angle/stress and controllable tifngctions of the two variants in a cyclic
loading, etc.

For simplicity, only two variants are consideredtire current model. That leads to a
limitation of the model: the mechanical stressestnhe compressive; otherwise the third
variant (with c-axis along z-coordinate) must b@&stidered. For example, the third variant
might be energetically preferred in 2D tensile ses (tensilex andgy). In addition, the
elastic energy, magnetostriction, demagnetizatisagnetic-domain structures are ignored in
current model. Detailed discussions on these faatan be found in literature (Chernenko et
al., 2006; Heczko, 2005; Jin, 2009; O’Handley et aD00). Including these factors may
enable the model to describe the continuous vari@arientation (i.e., the variant
reorientation is not abrupt) (Murray et al., 20@’'Handley et al., 2000). Moreover, the
statistical model in (Glavatska et al., 2003) gisedicted a significant dependence of the

field-induced reversible strain on the 2D compnessitresses.

2.1.5. Conclusions

Graphical representation of energy preference @udesgram with hysteretic effects) is a
good tool to study the behaviors of FSMA under masi loading conditions: rotating/non-

rotating Magnetic Field-Induced Strain (MFIS) aneld-assisted superelasticity. Due to the
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hysteretic effect (non-zero twinning stress), thera meta-stable region in the phase diagram,
in which the material state (variant state) depemdthe loading history.

Reversible MFIS (reversible variant switching) ibtained only when the difference
between the two mechanical stresggs-(sy) is in a range governed by the material properties
(magnetic anisotropic enerd$;, and lattice strairzp) and the hysteretic effect — twinning
stressowinning T he criterion and the related material requireinaga different for the rotating
field (Egs. (14), (15)) and for the non-rotatinglé (Egs. (20), (21)). Such criteria and
material requirements for reversible MFIS providesign guidelines for FSMA actuators
working in multiple cycles with reversible strains.

The output stresssf) of a FSMA actuator can be larger than the bloglstress Ku/<o)
when an assistant stress)(is applied. By setting the difference betweerséhstresses, we
can also control the switching angles (Egs. (9) @) for rotating field), the switching fields
(Eq. (22a) for non-rotating field) and the timechians of the martensite variants in cyclic
rotating fields (Eqg. (12)). Such 2D configurationan give much flexibility of FSMA

applications in various situations.
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2.2. Reversible strain criteria of ferromagnetic sape memory alloys under

cyclic 3D magneto-mechanical loadings

2.2.1. Introduction

Recent researches (Glavatska et al., 2003; He,€20dl1) revealed that FSMA in 2D/3D
configurations (with multi-axial stresses) had muctore advantages than that in 1D
configuration (with uniaxial stress). For exampla, the 2D/3D configurations, higher
working stress (higher output energy) can be preicnd the critical stress or magnetic field
triggering the martensite reorientation can be dutoesatisfy various applications (He et al.,
2011). Therefore, there are increasing theoretieabarches on FSMA'’s behaviors under
multi-axial loadings (2D/3D configurations) (e.@slavatska et al.,, 2003; He et al., 2011,
Kiang and Tong, 2007; Kiefer and Lagoudas, 2009p\’et al., 2002).

Reversible strain (with martensite variants pegally switching to each other during
cyclic loadings) is a basic requirement in most ASKevices under magneto-mechanical
loadings of multiple cycles. The criteria for olptiaig the reversible strain in 1D (a uniaxial
stress plus a non-rotating magnetic field) (Hecakal Straka, 2003; Heczko et al., 2006;
Straka et al., 2006) and 2D configurations (biax@mpression plus a rotating/non-rotating
magnetic field(He et al.,, 2011) have been derived recently. Hanethe 3D criteria of
reversible strain for general cyclic magneto-meata@roadings are seldom reported. In this
section, we extend our previous energy analysisetH., 2011) to study the switching among
all the three tetragonal martensite variants of RS(ik., five-layered modulated martensite
variants in Ni-Mn-Ga single crystals (see Fig. 180der 3D magneto-mechanical cyclic
loadings. Our aim is to provide a global picturg ophase diagram) of the variant switching
in FSMA and to derive general criteria for obtagieversible strain under various 3D cyclic

loadings.
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Martensite variant 111 Cubic Austenite
ay X5
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X2
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c a,
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m

Fig. 13. Schematic diagram of the austenite andntbetensite variants of Ferromagnetic Shape
Memory Alloys (FSMA).a, denotes the length of the austenite lattageandcy denote the lengths of
the long &-axis) and shortctaxis) axes of the martensite lattice (the diffeeebetweerma, andcy are

exaggerated in the schematic diagram).

In the following paragraphs, the mechanical andmetig energies of the three tetragonal
martensite variants are formulated and comparedetermine the energy preference of the
variants under 3D magneto-mechanical loadings (Fd@a)). For a clear comparison of the
energy preference among the three variants, demat@agneto-mechanical stresses (Eq. (38))
are defined from the energy formulation and utdiz@ a phase diagram (a plane graph, Fig. 15
without hysteresis and Fig. 16 with hysteresis)thim phase diagram, various cyclic magneto-
mechanical loadings can be conveniently studiegs(Fi7~20). Based on the phase diagram,
the general criteria for obtaining the reversibigia under various 3D cyclic loadings are
formulated (Eq. (43)). Particularly for actuatorssdn by cyclic magnetic fields, the criteria of
setting the mechanical stresses to allow field-eedureversible strain are derived (Eq. (51) for

rotating magnetic fields and Eq. (54) for non-roigimagnetic fields).
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2.2.2. Energy analysis and phase diagrams

2.2.2.1. Energy formulation

In order to determine the energy preference ofntiagtensite variants, we formulate and
compare the energy of the variants under threestBroeal normal stresses and a magnetic
field. For example in Fig. 14(a), the energy ofiaat | (which is assumed to consist of a

single magnetic domain) includes mechanical enétgyn. and magnetic energ¥mag-vi
(magnetic anisotropic energyK( [3in°4,) and Zeeman energy-(H [M )), which can be

expressed as:

E_ .=-0,+0,k,+0,F, wheree,= EM> 0g =M _ 3 | (26)

mech- vl —
a'A a'A

Enag-v = K, BIN* 6~ H M (27)

wherea, is the length of the austenite lattieg; andcy are the lengths of the long-éxis) and

short ¢-axis) axes of the martensite lattieg; a, andaz are respectively the angles between
the magnetic fieloH andxi-, Xo- andxs-coordinates (Fig. 14(a)f, is the angle between the

equilibrium magnetizatiorM and x;-coordinate;K,, H and M are the uniaxial magnetic
anisotropic energy, the magnitudes of the appliegmetic field (the unit is T) and the
saturation magnetization, respectively. The vabfdbe stresses{, o, andos) are positive for
compression and negative for tension in this secidithout losing generality, we ignore the
effects of elastic energy and magneto-strictiore h€his simple energy formulation is adopted
to facilitate the discussions and predictions @ tharteniste variant reorientation (He et al.,

2011; Heczko et al., 2002; O’'Handley, 1998; Stralkd Heczko, 2003b).
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% (b)

X,

Fig. 14. (a) Schematic diagram of the equilibriumgmetization vectoM in the martensite variant |

(short axis alongg-coordinate) under three-dimensional normal ste¢se o,, 03) and a magnetic

field H . a4, a2 andas (6,, 6, and 8,) are, respectively, the angles between the coatetnand the

magnetic fieldH (magnetizationM ). (b) The projection of the magnetic field on thex,-x plane

(with the magnitudeHsine;) and the projection of the vectdd on the same plane (with the
magnitudeMsing,).

It is noted that the angles (defining the directiari the applied magnetic field and the
equilibrium magnetizatiotM ) have the following geometric relations:
cos a,+ cosSa,+ cosa,= (28a)

cos 6, + co$f,+ cosf, = (28b)

where d,, 8, and g, are the angles between the equilibrium magnetiaaél andx;-, x,- and
xs-coordinates, respectively (see Fig. 14(a)). Ineottd determine the equilibrium magnetic

energy, the direction of the magnetizatibh(6:, 6, and 6s) needs to be determined through
the energy minimization principle. Take the caseaiant | for example (Fig. 14(a)). By Eqg.
(28b), only two oft1, 8, and 3 are independent. Therefore, instead of using, andd;, we

can describe the magnetization directionéhyand y (v is the angle betweexp-coordinate

and the projection of the magnetization veckbr on the xo-x3 plane, see Fig. 14(b)).
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Similarly, we can use; andg to describe the direction ¢ . Therefore, the magnetic energy

of the martensite variant | in Eq. (27) can be egped as:

E = K,[8in° §,— HM (cosz, co#,+ sim, sif, cogCy (29)

mag- vl

The equilibrium magnetization directiofy () can be determined by minimizing the magnetic

energy as:
aEma — vl . . . . 62Ema vl
6—45:0 . S|m1EB|r€1DSIr((0—¢/)= 0- ¢=¢p (also makmgawijz (30a)
T 0 K, sin ) -H M s, (c08,0 cdp—y) - s cos] = (30b)
1

Equation (30a) means that the projectionsviofand H have the same direction in thexs
plane. By Eg. (30a), Eq. (29) is reduced to Eqaj3b calculate the magnetic energy of

variant I.

Enag. v = K, [3in” 6, — HM [tosfr, - 6, | (31a)

The first term on the right-hand side of Eq. (3ahe magnetic anisotropic energy while the

second term is the Zeeman energy. Similarly, thgnagc energy of variant Il and Ill can be

obtained as
Emag—vll =K, [$in® 6,-H M [tos@, - 6,) (Blb)
Ernag-wii = K, [3in? 6,—HIM[tostr, -6, (31c)

Using Eq. (30a), Eq. (30b) can be reduced to E2a)(3or determining the directiofy of
equilibrium magnetization in variant I:
K,3in28 —-H M [Bing@, -6, )= for variant | (32a)
Similarly, the equilibrium magnetization anglesvariant 1l and 11l can be determined by:
K,3in24,-H M [sin@, -6, )= C for variant Il (32b)

K,3in28,-H M [Bin@,-6,)= C for variant Il (32¢c)
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Normalized byK,, Eqg. (32) changes to:

sin26{—HwI

[sin@r, -4 )= ( for varianti (i=1, 2, 3) (33)

The above equations containisig functions generally have no analytical soluticas;ept
some special conditions. For example, Eq. (33)orimizing the magnetic energy have the

analytical solutions as:

it AM o, sinB=0=g=0  forvaranti (i=1,3) (34a)
r AM o1 g :% for varianti (i= 1, 2, 3 (34b)
If H M >1 =0 forvarianti (i=1, 2, & (34c)

Equation (34) means that the magnetization is albag-axis (the easy-axis of magnetization)

when the applied field is weakH(M /K, =0); whenH is strong H M /K, >1), the

magnetization is along the field; for other cagbs, magnetization is in between the c-axis

and the field. Detailed discussion about the depeoes of the equilibrium magnetization

angles on the direction and amplitude of the magfietd can be found in (He et al., 2011).
With Eqgs. (26) and (31a), the total energy of varia combining mechanical energy and

magnetic energy can be expressed as
E) = Eechut Emag w="0 & +0,[E,+0,lE,+ K, [$in® ¢,- HOM[tosf ,-6,) (35a)
Similarly, the energy of variants Il and Ill can dletained respectively as

EvII = Ernech— vil + Emag— vil

. (35b)
=-0, ¥ +0,&,+0,&,+K, Birfd,-H M Ocosf ,- 6,

EvIII = E’nech—vlll + Emag— vill

. (35¢)
=-0,%,+0,&,+0,,+K, [5irf §,-H M Ocosf .- 6,

Normalized byK,, the energy of the variants is expressed as
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c = Evl 1 )

=4 L&, + 22 2 [, + 2 S [g,+sin* 6, - [cos@,— 6 36a
B T T B B oSt =6, (362)
E, s—iv" = ——gz @1+—Z3 @2+—zl iz, +si? 6, M reose, -6, (36b)

u u u u

Evm = EV a —%B‘1+%E‘2+%B’2+Sin293— sl

Ll u u u

[Costr,— 8, ) (36¢)

2.2.2.2. Phase diagrams
In order to compare the variants’ energy to deteentheir energy preference in the given
mechanical stressesy( o> andos) and a magnetic fieldH ), we calculate the mearE(,,,

and the deviatoric parts§((i =1, 2 and 3)) of the variants’ energy as:

E_ = E, +Ev3u * B :5{( i(“gl) (0,+0,+0,)+sin’ 8, + sirt 6,+ sirf @,
. (37)
M (cosr, -6, »+ cost,-6, ¥ 009(3‘53]}
S.I. = _E'nean_ _Evl
1((20,-0,-0,) _ . : .
== 2 "3 _2sif g + sirf g, + siig,
3 K, /&
(38a)
-6, ¥ cos(,-6, 9 cosg—eg]})
= S1—mech+ S— mag
SZ = _E'nean_ _E\/II
:}{M 2sit g, + sirf g, + sirf g,
3 K, /&
(38b)

—6, ¥ cos;~ 6, ) Cw(_al]})
:Sz—mech+ %— mag
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S3 = _E'nean_ _EVIII

_1 (20,-0,-0,)
3 K, /&

HKDM [[]2003('3_‘93 y cos( -6, ) C(BQ—QZ]})

= S3—mech + %— mag

-2si g, + sirf g, + sirf g,
(38c)

+

where:

S _1 !201—02—03)
~mech 3 Ku /50

S, _1 5202—01—03)
-mech 3 Ku /50

20,-0,-0,)

1
Ss—mech_ 3 Ku /50

H

{—25in26’1+ Sirf @, + sirt g, + KEM [ 2cost, -6, ¥ cos(,-6, ) cmsg—es]})

Wl

Si—mag =

H M
KU

| =

Sz—mag =

3{{—Zsin2 0, + sirf 6, + sirt 6, + fj2cos@, -6, - cosg, -6, ¥ cos(3—€3]}

HM
KLI

S, mag =%{{—25in2 B, + sirt 8, + sirf g, + [ 2cost,~6, ¥ cos(,-6, ) cms(—&l]})

o (> 0) is the strain change due to variant switchfigech andS.mag (i =1, 2 and 3) are the
normalized deviatoric mechanical stresses and nagteesses (magnetic driving force for
variant switching), respectively. It is noted thhere are simple relations between these
deviatoric parts:

S+3+ 3=0

S1—mech+ %— mech+ %— mech= O (39)
S:mag + %— mag+ %— mag: O
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Therefore, a phase diagram (a plane graph) of tmgemsite variants under three-dimensional
mechanical stresses and a magnetic field can lagnebitin terms of the deviatoric paBgsee

a simple example in Fig. 15, whekeIM / K, =0 is assumed, i.eS§.mag = 0). It is noted that
when there is a larger compression (i.e., largsitipe stress value) along direction (orxp, X3

directions),S (or &, S5) will be larger (according to Eq. (38)) so thatigat | (or II, 111) will

be more energetically preferred. For example, wariis energetically preferred under the

single compressive stress aloggroordinate witha, = KU/Z =1 and g,=0,= (, whichis
80

u

represented by point A (with the coordinatés=2/3, §= §=-1/8) in Fig. 15. The

coordinates of point A are determined by the pettjmerar projections of the vector OA onto
the three axesS). It is noted that the phase diagram is a pldregram (plane graph) because

only two of theS coordinates are independent (see Eq. (39)).

1 (20-7 — 0, 0-3)
8,=8 s mecn = =
‘2l 2-mech 3 KH /50
S 14 %
/\\f T g —Variant I - ,-’\x

% A =y
W e B 7 R P
\ v . - ’
A} \ ® e ’ L
L T ot ’
\ \ / ’ ’
% ’

(20-3 —0,—0; )
K, /g,

1
Sj': Sj’-mech = 5

111 P

Fig. 15. Phase diagram of the three martensiteangriin terms of normalized deviatoric magneto-

mechanical stresses without hysteresis. The phageach (a plane graph) consists of three regions
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where the variants |, Il and Ill are energeticalgferred, respectively. When no magnetic field is
applied, the deviatoric magneto-mechanical streSqeefined by Eq. (38)) only have the mechanical
parts §=Smec)- The coordinatesy, S, S) of a point (e.g, point A) are determined by the
perpendicular projections of the vector OA onto thleee axes. Here, point A has the

coordinatess, =2/3, §= §=-1/&

The phase diagram in Fig. 15 is equally dividea itiiree regions for the energetically
preferred states — variant I, Il and 1ll. A bordmtween any two of these regions is the equal-
energy line signifying the reorientation betweee tivo martensite variants. In the phase

diagram, there are three borders (switching lirel, |l <11l and Ill<I) defined as:

Switching 1o 1l S=S (S<0) (40a)
Switching o S=S§ (§< O (40b)
Switching Il - Il S=9§ ($< 0) (40c)

This kind of phase diagram has been shown to bilugestudying the martensite phase
transformation and variant switching under threeatisional mechanical loadings (Levitas

and Preston, 2002a, 2002b).
In real experiments, martensite variant reorieotat{switching) needs extra energy to

overcome some frictional force (known as twinnitesso,;...,) (Heczko, 2005; Heczko

and Straka, 2003; Heczko et al., 2006; Likhached diakko, 2000; Straka et al., 2011).
Therefore, the switching lines with hysteresisdatermined (using the definitions §fin Eq.

(38)) as:

a-twinning and % 35
K, /&

a-twinning a.nd l§ 35
K,/ &

Linel -~ 11 § = §=( e~ Bu)~( B E)= B Ef=

(41a)

Line | < 11: S~ 8S=(Few~ B)~( Beam E)= B E=
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ag. . .
Line | - III: %—Qzﬁ and S> S

u 0

(41b)

g,
Linel — Il S-S= K‘W';”'“g and S> S
Linell - Il S,-S= Gurning 517 S> S

K, /& (41c)
Linell < lll: S, - g_% and $> S

It is seen that the three equal-energy lines (lirel, Il <11l and lll«<1) are replaced by six

switching lines (considering hysteresis) as showfrig. 16, where the normalized twinning

a, 1
stress is assumed:me = =
K,/ & 3
Gnrmm'nﬂ S2
Sz —S3= —— =143 G pvinning
K, /¢, S’_S’=K ; = =1/
&,
I1— 1I-. L a2
N e Tl
1T «—11-. N Tttt .
> T Y Y ; o Te—II
O—m'mnma ~
S, —S,= —£ =13 '~ NSy 17 G omine
K, /¢ NN SRR Tty N Lot s =s=—— =13
\\\ \\\ N L Ku/é'o
Variant [I1
. y
; i
A l "’ oy AY
N 1 Vat‘lantl
U | / J
h | ;o
\\I |
\\I I
1 I
Il «—1 =1
O-nrinm'nv G-m'inm'nv
8§;-8,=——% =173 S, -8S;=——% =173
e K, /g, s K, /&,

Fig. 16. Phase diagram of the three martensiteangriin terms of normalized deviatoric magneto-

mechanical stresse$ (defined in Eq. (38)) with hysteresis (normalizednning stress is assumed:

O inni 1 : . . .
% = 5). The phase diagram consists of stable regiorsdfttaded area where only one variant
u ‘90

can exist) and meta-stable regions (un-shadedmreee the variant state depends on loading history)
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The phase diagram (with hysteresis) is divided s#weral parts: three stable regions (for

variant I, Il and Ill, respectively) and some mstable regions. The three stable regions are

defined as

Variant | S-S > Fwwinning and S- S O winning (42a)

- Ku /‘SO - Ku /50
Variant I S - §>M and S- S Ouwinning (42b)

K, /¢, T K, /g,

O ..
Variant Il - §> g and - Sx Wiy 42¢
>3 K, /& 372 K, /& (420)

In the meta-stable regions, the material’s stapeedés on the loading history. With this phase
diagram, we can study the path-dependent martemariant reorientation and derive the
criterion for obtaining reversible strain under layenagneto-mechanical loadings as shown in

the following sub-section.

2.2.3. Criterion for obtaining reversible strain under cyclic magneto-mechanical
loadings

With the phase diagram (Fig. 16) and Eq. (42), reeg@ criterion for obtaining reversible
strain can be obtained: when a cyclic-loading patithes any two of the three stable regions,
the cyclic switching between these two variants¢ded byi andj, i #j) will occur and lead to

reversible strainMathematically, we can express this criterion as:

(s-5s) > Fwiming ¢ that time S- Sz (43a)
max K /&, K,/&
a-twinning . Utwinning

- <-——— at that time S- S>——— 43b

(S' ﬁ)mi” K, /& 7P K, /& (430)
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wherek represents the variant other thaor j (i.e.,k # i, k #j). That means, when the two

extreme points (§ -S, )max and (s -S, )mm) of the loading path are respectively in the sabl

regions for variants andj, the reversible strain due to the cyclic switchiigween these two
variants can be obtained.

In the remaining parts of this section, typicalrapses are demonstrated for the applications
of the general criterion (Eqg. (43)) in differennhés of cyclic loadings: (1) pure mechanical
stresses, (2) pure magnetic field (rotating or raiating) and (3) proper stresses setting for

obtaining reversible strain with a cyclic magnéiatd.

2.2.3.1. Pure mechanical stresses (ignorable magiedield H (M / K, =0)

The case of pure mechanical stresses is obtainedidsfituting Eq. (34a) into Eq. (38):

~ 1 S201—02—03)
o S. - §—mech_ 3 Ku /50
Shomeg = 1 5202 -0,-0,)
Sz—mag =0 and % = g—mech = 5 K /& (44)
—ma = 0 ! °
S-mag 1 3203—02—01)
S?; = %—mech =3
3 K, /&

That means, when the magnetic field is weBk / K, =0), the mechanical stresses are

the dominant driving forces for the variant switai In Fig. 17, it is convenient to use Eq.
(44) to determine the loading paths of the two eplas(Eqgs. (45a) and (45b) ) for the pure-

mechanical cyclic loadings of compression and temsi

fixed 7,=—% =1
K,/& 3
o, = I changes betweer 1 and (45a)
K,/&
fixed 7,=—23 =0
K,/&
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fixed &, =1

o0, changes between- 1 and (45b)
fixed g,=0
nwinning ‘S‘g
S,=S =— O-nrmnm
2 K”/EO SZ_S1=K—/; =1/3
— . . u 0
= I-. ~Variant I o I—TI
- ””””””””””’:"
I «—1II-. ; R 2 ‘
T . . [~ e e
S, -5, miming S - e __ - ., ///, J <11
KU /80 K W B 2" / 0. . .
S \\\ P 2 s . g , S/—S2= twinning =1/3
N A K, /g,
Variant'lil - /| /Variant I
VN '/ /// ,’/ y
S, W
O-zl /// / ;
L) . I ,’ //Ilj"
time VA
o2m L
N [
Constant .
o/ o, . i
Il <«—1 I—>1
x 0.2 O-n\'innina O-m’mnino
ZI §,-8,=—""% =13 8, -8, =——"% =173
xl Ku /‘(“0 Ku /EO
. : : . . o o
Fig. 17. The loading paths of cyclic tension anthpeession along,-direction (@, =—2— =-1~1)

u/ 0
while the other stresses are fixe(dfl =1/3, 0,= 0) for path AB,, and (51 =1 o, :O) for path

A.B,. The loading path #; touching two stable regions have reversible stvéncyclic switching
between variants | and II; the loading patiBMAtouching only one stable region cannot have cyclic

variant switching.

In the first example (Eqg. (45a)), the normalizecest @,) along xx-direction cyclically
changes between -1 (tension) and +1 (compressidnile the other two stresses are fixed
(0,=1/3 andg;=0). It is seen that the loading path;B4) for this example touches the two

stable regions of variants | and Il so that theemak will cyclically switch between variant II

and variant | (see Fig. 17). If the stress algndirection increases (e.g7; =1), the loading
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path AB, (Eq. (45b)) can touch only one stable region; thaains the material will stay in
variant | without martensite reorientation or resiele strain. According to the general
criterion Eq. (43), when the cyclic mechanical-logdpath satisfies Eq. (46), the reversible

strain of the cyclic switching between variantsitldl can be obtained.

atwinning . atwinnin

- > g at that time S- S/ 46a

(87 %) > T = (462)

(S-S) <-wmn ot that time S- S vmng (46b)
min K, /& K,/é&

It is easy to verify that, the loading path’s erteepoints of the first example (pointg &nd
B1) satisfy respectively Egs. (46a) and (46b), wttike point B of the second example cannot
satisfy Eq. (46b). From these simple examples #hown that the reversible strain can be
obtained with cyclic compression and/or cyclic tensas long as the mechanical stresses
satisfy the general criterion Eq. (43), or partely Eq. (46) for cyclic switching between

variants | and II.

2.2.3.2. Pure magnetic fielc(a1 =0,=0,= O)
Substituting Eq. (34c) into Eq. (38), we obtain theviatoric stresse§ for the strong

magnetic field @ M / K, >1):

%: S—mech+coszal_§’ §: §mech+ CO%O’Z——; ! §: §1ech+ C6$Y3_?]3- (47&)

where the geometric relation of Eq. (28a) has hesen. When no mechanical stress is applied

(61=02=03=0, i..,.S1-mec™ S-meci= S-mect= 0), EQ. (47a) can be simplified to:

- 1 . 1 - e
S =cofa, 3 S = coda, 3 S= cow, 3 (47b)
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There are usually two types of magnetic loadingisr@tating magnetic field (changing the
magnetic-field direction with a fixed magnitude).gl¢ Boonyongmaneerat et al., 2007;
Chmielus et al., 2008; Mdullner et al., 2002); (nrrotating magnetic field (changing the
magnitude of a magnetic field with a fixed direafiqe.g., Murray et al., 2000; Straka and

Heczko, 2005; Ullakko et al., 1996).

Rotating magnetic field

In literature, there are some experiments with gmatc field rotating around a certain axis
of the single crystal FSMA (e.g., Boonyongmaneearatl., 2007; Chmielus et al., 2008;
Mullner et al., 2002). For example, a strong maigrfetld rotates aroungs-axis (i.e., fixedus
= 9(° and the field rotates in the-x, plane, see the insert of Fig. 18) can induce sivier
strain (cyclic variant switching) without mechardisresses. Using Eq. (47b), the loading path
AB (in Fig. 18) representing a strong magneticdfiebtating aroundcks-axis can be plotted,
which touches the two stable regions for variargted Il. It is noted that, for the rotating field
aroundxs-axis, the angles is fixed (= 90) andS; is also fixed & = —1/3 according to Eq.
(47b)); therefore, the line AB is perpendicularthie coordinatéss in Fig. 18. Similarly, lines
BC and CA in Fig. 18 represent the paths of a gtratating field around;-axis andx,-axis

respectively.

To obtain the reversible strain with cyclic switohibetween varianisandj, the criterion
Eq. (43) must be satisfied. It is easy to verifgttthe strong rotating field without mechanical
stresses (Eq. (47b)) satisfies the criterion bex#s- §) cyclically changes between -1 and

+1, and the normalized twinning stress is alwaystp@ and less than 1:

S-SO[-1 +] 86)
O-twinnin

0<K—/g <1 (48b)
u £O
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Equation (48b) is the basic requirement of the nadtg@roperties for the Magnetic-Field-
Induced-Strain (MFIS) in FSMA (He et al., 2011; Hkc and Straka, 2003; Sdderberg et al.,

2005).

Jm-mmng S2
8,8, = T 13
K, /e Sy-8y= o =1
&
11— II-. . T "H =
S -VariantII------ =
I I T e
A ~ . -
N LS W = - ] «=—11
Gm'mmm' ~ . - : - ;
S, -8, = "8~ 1/3 ™~ NN T :
K /80 R T A0 B ' 7 ’ S nwinning
NN R Ky %
Y A K /g,
Variant 111 i ; i
T ] S
1 e 0
S ! B g Y
/ . . s A %5 1/ Variant I
Rotation around X ;-axis kN5 gt
1 i
\I I/
1 [
I 1
% Il <—1 INE=2
2 vinning vinning
8p-8=—E — 13 | | §,-8=—"E =13
K,/ & K, ls,

Fig. 18. The loading paths of the strong rotatiragmnetic fields H M / K, >1) without mechanical
stresses@, = 0, = g, =0): BC for rotation around;-axis @ = 9C¢°), CA for rotation arouna-axis

(a2 = 90°), AB for rotation arounds-axis @z = 9¢°). Each loading path can touch two stable regions

leading to cyclic switching between the two varsaot the stable regions.

Non-rotating magnetic field

Usually, non-rotating magnetic fields are appliémhg a certain axis of the single crystal.
For example, the direction of the applied magnfitid is fixed inx,-direction (i.e.,z; = 0,
a,= 90 andaz= 90) while the magnitude of the magnetic field cydiigahanges between

zero H = 0) and a large valueH M / K, >1). With Eq. (44) for weak fields, Eq. (47a) for
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strong fields an@.nech= 0 (N0 mechanical stress), the two extreme pahtke loading path
(in Fig. 19) corresponding td = 0 andH M / K, > 1are point 0 § =S, = S; = 0) and point

A (S =2/3,S =S =-1/3), respectively. Based on the symmetry af(B§), the loading path
of the non-rotating field along;-axis is represented by the line OA. Similarly, tbhading
paths for the cyclic non-rotating magnetic fieldeng x.-axis andxs-axis can be represented
by OB and OC, respectively, in Fig. 19. It is sélkat a non-rotating cyclic magnetic field
cannot induce reversible variant switching becatséading path cannot touch two stable
regions of the phase diagram. In real applicat@fnson-rotating magnetic fields, mechanical
stresses are needed to obtain reversible straims, Em important question arises: how to set
the mechanical stresses to allow the cyclic magrfetld to induce reversible strain? This

guestion is answered in the following sub-section.

vinning

S, -8, = " /3]

twinning

Fig. 19. The loading paths of the non-rotating nedignfields (with magnitudes cyclically changing
betweenH = 0 and a large valuel (M /K, >1) in the phase diagram: OA, OB and OC are the

loading paths of the magnetic field aloxgaxis, x-axis andxs-axis, respectively. Each loading path
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can touch only one stable region; therefore, threnatating magnetic field cannot solely induce @ycl

variant switching.

2.2.3.3. Stress-setting for reversible MFIS (Magneat-Field-Induced-Strain)

In most of the FSMA actuators, the mechanical seesre properly designed (fixed) and a
changing magnetic field is used to achieve hightfemcy control of the deformation. In this
subsection, from the general criterion Eq. (43), dexive the criterion of setting the
mechanical stresses to allow the reversible sirainced by a strong rotating/non-rotating

magnetic field.

Rotating magnetic field

For a strong magnetic field rotating arouehxis (a, =90° andH M / K, >1), the range

of the values of§ — §) can be obtained from Egs. (47a), (38) and (28a) a

S =S =S mech= Simeen T €OS @, —COS @ = {—(i' _/Zj ) —1} ~ {—(i _/jj ) +1} (49)

Equation (49) means thag (- §) cyclically changes betwee{r(ai -0, )/(Ku /50)—1} and
[(Ui -0, )/(Ku /&) +1J during the field rotation. To satisfy the genemaderion (Eq. (43)) to

obtain rotating-field-induced reversible strain tgriant switching betweem and j, the

loading path must touch the two stable regions as:

g —0. - -
( [ J ) +1 > O-twmnlng and 0-| + } Uk + atwmmng (508)
K,/& K./& K,/&, K,/ e K,/&
g —0. - ) -
( [ J ) _1 <- Utwmnmg and U] + JZ Uk + Utwmnmg (50b)
K,/& K,/& K,/&, K,/ &, K,/&,
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That means the mechanical stresses need to satisfy

- g —0,; i
_(1_ O-twmmngjS ( i j ) <1- thmnlng (Sla)

K, /& K,/& K,/&,

g +1> O, + thinning
K,/& K./& K,/&,

(51b)

g. g, .
41> g, 4 _twinning (510)
K, /& K, /& K,/&,

u

It is seen that, as long as the mechanical stresgedy Eq. (51), a strong rotating field
(aroundxg-axis) can induce reversible strain via the cysiitching between variantsand;.
Particularly, for the cases of two-dimensional coespion (i.e.px= 0, ¢; >0 andg; >0), the
requirements of Egs. (51b) and (51c) are autombtisatisfied (note Eq. (48b)) and only Eq.
(51a) need to be taken care of. This criterion fdrc@mpression (Eq. (51a)) was also obtained
with simple 2D energy analysis in (He et al., 2011l)s also noted that the trivial case — a
pure rotating field without mechanical stress< o> = o3= 0) can satisfy Eq. (51); that means

a pure rotating field can induce reversible stesriscussed in Fig. 18.

Non-rotating magnetic field

For a non-rotating magnetic field along-axis (a,=0°, a, =90 andg = 9¢), whose
amplitude cyclically changes between zafo=0) and a large valueH M / K, >1), (S-9)

cyclically changes betwee[n(ai -0, )/(Ku /50)] and[(ai -0, )/(Ku /£O)+l] :

5-5 [(i _/Z;)H(i _/2)”} 2

For obtaining reversible strain, similar to Eq. (30 loading path should touch the two stable

regions as
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g, -0 o ; -
( i ] ) +1 > O-twmnlng and 0-| + JE Uk + Utwmmng (533)
K,/& K,/ & K,/&, K.,/ &, K,/&,
g -0 - ‘ -
( i ] ) <- O-twmnlng and J] > Jk + thmmng (53b)
K,/& K./& K, /&, K /&g, K /&,

Thus, the criteria of setting the mechanical sagde allow the reversible strain (induced by a

non-rotating cyclic magnetic field alorxgaxis) are

Utwinning < (Uj -G ) <1- Utwinning (54a)
Ku/£0 Ku/‘go Ku/‘go
(of +1 O, + Jtvvinning (54b)

>
K,/& K./& K,/&,

g, ag. . .
] > Jk + twinning (540)
K,/& K, l&g K,/é&,

Particularly, for the cases of two-dimensional caespions (i.e.gx= 0,0 > 0 andg; > 0),
Eq. (54b) is automatically satisfied (note Eq. (38md Eq. (54c) is included in Eq. (54a);
therefore, only Eq. (54a) needs to be taken car@hu criterion for 2D compressions (Eq.
(54a)) was also obtained in (He et al., 2011). Trheal case — a pure non-rotating field
without mechanical stress; & g; = ox= 0) cannot satisfy Eq. (54a) because the twinatress
(frictional force) is always positive (Eg. (48b))hat means pure non-rotating field cannot
induce reversible strain as discussed in Fig. A9nbst existing experiments with the non-
rotating field, a uniaxial mechanical stregsis applied (perpendicular to the magnetic field
along x-axis) to obtain the field-induced reversible strgee the insert of Fig. 20). In the

uniaxial-mechanical cases €o=0 andg; #0), the requirements of Eq. (54) are simplified to

. g. a. . .
twinning < j <1_ twinning (55)

K,/l&, K,lg,  K,lé&,

Figure 20 shows some typical loading paths of the-mtating magnetic field along-axis
and the uniaxial mechanical stress aloggxis. The paths &, O,A, and QA3 are for
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o,=0,l(K,/&) =1/3, 2/3 and 1, respectively; and the twinningesg is assumed to be

I (K,/&) =1/3. It is seen that the first two pathsA@and QA,) satisfying Eq. (55)

thinning
can touch two stable regions leading to cyclicar@rswitching and reversible strain, while the
last path (@A3) cannot. The criterion (Eq. (55)) of setting th@axial mechanical stress for

allowing non-rotating-field-induced reversible stréaas been verified in experiments (Karaca

et al., 2006; Heczko, 2005; Heczko et al., 2000620

O rwinning S2
S, -8;= = =13 O rvinning
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Fig. 20. The loading paths of the non-rotating neignfields alongx;-axis (magnitudes cyclically

changing betweei = 0 and a large valuel (M / K, >1) with a constant mechanical stress

alongx,-axis: QA;, OA;and QAsare the loading paths af, =

g,

=1/3, 2/3 and 1, respectively.

u 50

Paths QA; and QA,touching two stable regions can lead to cyclic shiitg between variants | and

II; path QA3 touching only one stable region cannot lead tdicyariant switching.
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2.2.4. Discussions

The deviatoric stresses consisting of the mechanical stresses and the nmaghresses
have the simple superposition forf € Simech+ Smag IN EQ. (38)) because the detailed
magneto-mechanical couplings (e.g., magnetostnictedastic energy and magnetic-domain
structures) are ignored here. Including these fadto the analysis may enable the model to
describe the continuous martensite reorientatien the martensite reorientation is not abrupt)
(Murray et al., 2001; O’Handley et al., 2000). Ag taim of this section is to provide a simple
global picture of the variant switching under 32layloadings, the derived formulae §fand
the associated phase diagrams facilitate the arellyredictions and graphical representations

of the magneto-mechanical effects on the variaittbimg (martensite reorientation).

Although the previous parts discussing the anaysolutions and the associated loading
paths in the phase diagrams are only for somedlypasedd = 0 andH-M/K, >> 1, it is not
difficult to use the same approach to analyticallynumerically determine the loading paths
for other magneto-mechanical loadings. After thadlog paths in the phase diagram are
obtained, the switching parameters (switching stogsswitching magnetic field or switching
rotation angle) triggering the martensite reorigatacan be determined (He et al., 2011), from
which the time fractions of the variants in a cychn be controlled by properly setting the

mechanical stresses and/or the magnetic field.

The above analysis is focused on the stable regibtisee phase diagrams to derive simple
criteria for obtaining reversible strain. In fathe material’s behaviour in the meta-stable
regions of the phase diagram is more complex. kamele, some cyclic-loading paths within
the meta-stable regions can still cross the switghines (e.g., crossing the linegd? and
P,Q. in Fig. 16), which might lead to reversible strdithe material’s initial state is properly

set. In this sense, the criteria derived in thiggpaare just sufficient conditions for obtaining
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reversible strain, rather than necessary conditidesertheless, for reliable designs of FSMA
devices (e.g., actuators), the criteria (sufficeamditions) are preferred.

As the martensite variants are tetragonal (Fig, 1% anisotropy of the magnetization
energy should be better described by tetragonalnstny. Thus, two or more material
parameters would be needed to characterize thetepg magnetic energy. So, the energy
formulation above would be more complex; but therapch is still useful: expressing the
loading path in the phase diagram in terms of #ha@atoric stresse§ to study the hysteretic
martensite reorientation. Instead of the tetrag@myhmetry, the assumption of uniaxial
magnetic anisotropy (with one material parame€grin Eq. (27)) is adopted in the section in
order to make the energy formulation simpler anfhtditate the derivation of some analytical

solutions and the key physical concepts.

It is also noted in recent publications (Straka att 2011b) that different twin
microstructures with different values of twinningess winning can be formed in the material.
But, the dependence of the twinning microstructumeshe 3D magneto-mechanical loading
conditions is still unknown. In our 3D macroscopimdel, the twinning streS&winning IS
treated as a constant for an FSMA material witlivargtwin microstructure (i.€guwinning d0€S

not change with the loading conditions).

2.2.5. Conclusions

Phase diagrams in terms of the deviatoric streSs@acluding mechanical stresses and
magneto-stresses) are useful in studying path-digmen(hysteretic) martensite variant
reorientation in Ferromagnetic Shape Memory All6sSMA) under complex three-
dimensional magneto-mechanical loadings. The sogsérpn form of the deviatoric stresses

(S = Simech + Simag In Eqg. (38)) facilitates the analytical predictsorand graphical
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representations of the magneto-mechanical effeatsthe variant switching (martensite
reorientation).

General criteria (Eq. (43)) for obtaining reversistrain under cyclic magneto-mechanical
loadings are obtained. As long as the criteriasatesfied, all kinds of mechanical stresses
(cyclic tension and/or cyclic compression) and nadignfields (rotating or non-rotating) can
induce a large reversible strain by the stressaaduand/or field-induced cyclic martensite
reorientation between two or more variants.

For magnetic-field-driven actuators, the criterfasetting the mechanical stresses to allow
the magnetic-field-induced reversible strain aravee (Eq. (51) for rotating fields and Eq.
(54) for non-rotating fields), which provide guiteds for designing FSMA actuators in

various applications.

2.3. Chapter conclusion

In this chapter, a 2D/3D energy analysis of maitenseorientation between/among
two/three tetragonal martensite variants is preseriBased on this analysis, phase diagrams
are drawn to graphically study the path-dependeattensite reorientation of FSMA in
general multi-axial magneto-mechanical loading ¢omak. Criteria and the related material
requirements for obtaining the reversible strainyalic loadings are also derived.

In the 2D/3D energy analysis, we assume that thdimg conditions (i.e., uni-/multi-axial
loading) have no influence on the twin microstruetuof the material so that the twinning
stresSowinning IS SUpposed to be constant in all loading conatidBut this assumption needs
the experimental support. Moreover, shown by thé8PDenergy analysis, the most important
advantage of using FSMA in multi-axial loadingstigt a higher working stress can be

obtained (higher than the blocking stress in 1Dfigomation). And this theoretical prediction
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also needs the experimental verifications. Basedhese objectives, the following chapter
(Chapter 3) is devoted to the experimental studgnaftensite reorientation in FSMA under

multi-axial loading conditions.
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studied under biaxial compressions. The thresholdng force (i.e., twinning streSswinning, related

to the intrinsic energy dissipation) of the twinumdary motion, and the transformation strain due to
martensite reorientation are found to be constarmllitested 2D stress states. These findings imply
that the materials can work at high levels of rraMial stresses while keeping their advantagesw- lo
intrinsic dissipation and large reversible strakmllowed by the 2D compression tests, the 2D
magneto-mechanical tests (i.e., magnetic field witxial compressions) are reported. Preliminary
results show that the working stress increasestivélauxiliary stress.
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3.1. Biaxial compression tests

3.1.1. Introduction

The large strain of Ferromagnetic Shape MemorywllIFSMA) is due to the martensite
reorientation via twin boundary motion driven byahanical stresses and/or magnetic fields.
In literature, all of the experiments studying thrartensite reorientation of FSMA were
focused on a simple loading condition: a uniaxigchmanical stress and/or a magnetic field
(e.g., Heczko et al., 2000; Karaca et al., 2006tIMéi et al., 2002, 2003, 2004; Murray et al.,
2000; Straka and Heczko, 2005). However, the ualastress cannot exceed a critical value
(called blocking stress), otherwise the magnetieldfi cannot induce the martensite
reorientation. The small blocking stress (usuaftyaber than 3 MPa (Heczko et al., 2000;
Murray et al., 2000) ) leads to the low workingesses of FSMA-based actuators. Recent
2D/3D energy analysis (He et al., 2011, 2012) anstitutive models (Glavatska et al., 2003;
Hirsinger and Lexcellent, 2003a; Kiefer and Lagayd®09) implied that FSMA can work at
high stress levels in 2D/3D configurations (mukied stresses with a magnetic field). But, all
the existing theories assumed the kinetics of twoandary motion in 2D/3D configurations
based on the existing uniaxial experiments. Thiti@e experimentally studies the twin
boundary motion in NiMnGa FSMA single crystals undarious biaxial-loading conditions,

in order to explore the possibility of using FSMAmMulti-axial stresses of high levels.

3.1.2. Experiment
3.1.2.1. Material and experimental procedures

Single crystal Njo.Mn.gGav: 5 (at. %) samples of the dimensiatrs2.5x 2Cmm® (with
faces parallel to the {100} planes of the parerdtanite) supplied by Adaptamat Ltd. are used

in the quasi-static tests at room temperature, avlttee material is in the state of tetragonal
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five-layered modulated martensite (5M). From the CD$est (Differential Scanning
Calorimeter), the temperatures of martensite $hgt, martensite finishN;), austenite start
(As) and austenite finishAf) are respectively 50.5 °C, 48.5 °C, 57 °C, 58.5a the latent
heat of martensitic transformation is 7.7 J/g.

The lab-built experimental setup for symmetric méxoadings is shown in Fig. 21(a).
Biaxial compressive stresseas,(alongx-coordinate andy, alongy-coordinate) are applied
by four loading heads and measured by load cellAISE K1563 (resolution:+ 0.1 N
within £ 100 N). To reduce the friction, the clampers (sge F1(a)) were polished by 5um

SiC paper and graphite powder was spread on them.

(a) Experimental
setup

(b) Friction occurs when sample contracts
or elongates

Varying compressive Clampers M
stress o, o

|_._.’_’_—f_ _____

Constant compressive Sample | | H—

ﬁuy

Contact surfaces (between clampers
o tr -
é» Clampers ] s & and sample’s y-z surfaces) where
L] 5 friction occurs

| —

I:l I I:| M [ = ]
| SNESN . =

Load cell L] |1 Gauge section (length: 6 mm) |—-—-— ===
Motor S !
amp’e - Sample contracts
(x-y surface) y-z surface (area s,) — -

y !

: -

o, i [1-1]
y
Y. //:V
| = =
X surface | |
|
0 e 7 L] Sample elongates
, -

T
x-z surface (area s,)

Fig. 21. (a) Schematic diagram of the experimesgtlip for symmetric biaxial compression tests. (b)
Friction occurs on the contact surfaces betweercki@pers and the sample’s y-z surfaces. Dotted
lines are marked on the sample for reference slgpthia relative motion between the sample and the

clampers.

To observe the motion of twin boundaries (idendifigs the boundaries separating low-
strain and high-strain regions), the local stra@rmeasured using Digital Image Correlation
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(DIC) technique — amn situ optical correlation method to measure the dispree of the
sample surfacex{y surface in Fig. 21(a)) by a CCD camera (Allied iviss Technologies
PIKE F-505: 245X 2054 pixels). The nominal strain is calculatedresaverage strain in the
gauge section.

Before each test, uniaxial compressive stress=(9 MPa) is applied on the sample to
make it back to the initial state- single martensite variant with its short-axis gon
coordinate (energetically preferred &y), so-calledk-variant. During each tesiyy is fixed at

a certain level by a feed-back control system (esr%), while the compressive loading and

unloading alongy-coordinate is displacement-controlled (nominahistrrate:7.7x 10°/s).
Loading stops whenyy increases to 24 MPa, and then unloading take® plati o,y returns

to zero. The values of stresses and strains argved®r compression here.

3.1.2.2. Characterization of experimental setup

During the experiments, the sample contracts angates, leading to the external friction
between the clampers and the sample’s surface$i(ge21(b)). To estimate the effects of the
external friction, the friction coefficient is measured. Fig. 22(a) shows the schematic

diagram of the experimental setup for measuginé displacementy alongy-coordinate is

applied by a stepper motor (constant velocity10°m/s), while a constant normal forég
along x-coordinate is applied on the samplgg surfaces. The total frictional forcefypis
measured by a load cell at the end of the sampkrenly is applied (the other end is stress
free). It is assumed that the frictional force isiformly distributed. Then the friction
coefficientu can be calculated ag:= (2y) / (2Fy) = fy / Fx. Fig. 22(b) shows the frictional

forcefy measured at different levels of normal foFgewhereu is determined to be 0.095.

79



(a) Constant compressive (b)
F, Clampers force F, 9 ‘ ‘ ‘ ‘
([T ~ 8 0 Experiments = ]
4 N . ! ; : -l
L] |:|I“m < 7= Fitting line: £, = 0.095F,
Y 6 ; ; : [] d
Motor piy §
Sample ‘E 5
(x-y surface) y-z surface g 4-
S
Load cell £ 3-
y E 2-
Y 1k o
—>X 0 fE AP A AR RIS APRPRTETIN AT
z 0 10 20 30 40 50 60 70 80 90
Normal force F, (N)

Fig. 22. (a) Schematic diagram of measuring thaidm coefficient. (b) Frictional forc§ at different
levels of normal forceF,: squares are the experimental results and thel $ioke is the fitting
line: f, = 0.09%, .

3.1.3. Results and discussions

3.1.3.1. Experimental observations

Fig. 23 shows three typical nominal stress—strairv&s 6y,—s,y) among our 17 tests at
different levels oby (0 ~ 9 MPa). For all of theyy—¢,, curves, please refer to Appendix A.1.

Fig. 23(a) is for the martensite reorientation undeiaxial compressiomyy (oxx = 0),
where the sample’s initial state xsvariant. After a very small elastic loading, magie
reorientation from x-variant to y-variant (with shaxis alongy-coordinate, energetically
preferred bysy,) starts. During the reorientation, with increasingminal strainey, the
nominal stressy, remains nearly constant (stress plateau) whileanant (with large local
strain¢yy) nucleates and grows via the interface (twin b@uydpropagation (see the DIC
images accompanying the curve). After the reorierathe elastic deformation of y-variant
leads to significant stress increase. Transformagtoaine, due to martensite reorientation is
determined as the strain change between the twtielaading parts. During unloading, only

the small elastic deformation is recovered. Residiiain of 5.7% appears because the
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material’s state at the end of unloading is y-variather than x-variant (initial state). In this
uniaxial test, the residual strain representsrdnestormation strain.

For biaxial compressionsng # 0 in Figs. 23(b) and 23(c)), the transformatioraiste,
changes little &, = 5% ~ 5.7%) while the residual strain decreasgsifgantly with
increasingrx because reverse martensite reorientation fromrigavato x-variant is induced
during unloading. At high levels af (e.9., 9 MPa in Fig. 23(c)), super-elasticity dan
obtained (zero residual strain), where the evohstiof the deformation patterns (strain
distributions shown by the DIC images) are revéesilCompared with Fig. 23(a), the
deformation patterns in Figs. 23(b) and 23(c) avegharp (x-variant and y-variant are not
clearly separated). The reason might be due t@Ehelastic effects of the kink at the twin

boundary and 2D geometric compatibility (He and ,1010; Straka et al., 2010).

(a) Fixed 6, = 0 MPa (uniaxial test) (b) Fixed o, =5 MPa (biaxial test)
v T T T 25 . -

[ 4
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Local compressive strain & (%)

Local compressive strain &, (%)
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Fig. 23. Nominal stress-strain curvegfey,) at different levels ob,.. (a)ow= 0 MPa, (b)o= 5

MPa, (Cloxx=9 MPa. The DIC images show the distribution®obl strainey,.
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It is also seen in Fig. 23 that the upper/lowertgala stresss,, for forward/reverse
martensite reorientation increases with increasingThe two plateaus (denoted respectively
bY Gupp-plat@ndaiow-pla) are estimated from thgy—s,y curve @y atey = 3%). The dependence
of oupp-plat AN Tlow-plat ON oxx IS shown in Fig. 25(a). It is found that the noalistress-
hysteresis (difference between the two nominaleglatstresses pp-piat — low-play)) INCreases
with increasingoyx. In fact, this observed stress-hysteresis cansisttwo parts (i.e., the
material intrinsic hysteresis and the structuraéexal friction), which will be discussed in the

following sub-section.

3.1.3.2. Intrinsic plateau stressesaf and o;) for forward and reverse martensite
reorientations

The compressive stresg, is applied by two stepper motors at each endettdmple (see
Fig. 21(a)). By symmetry, the center of the sanfpant ‘O’ in Fig. 24) can be taken to be

fixed, and we only need to consider a half of thmgle for the force analysis.

Varying Compressive
stress o,

Constant compressive
stress o,

S ——

P W |

—| Half y-z surface
e 1/ (area s,/2)
i
Sample center: x-7
surface (area s,)

Fig. 24. Force analysis of a half sample duringliog. f, is the frictional force on each contact surface.
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When the sample contracts during loading, the tiietional force (2)) on the contact
nter

surfaces is opposite to the applied compressiessty,. Then the compressive stresg

at the sample center is calculated as:

yy y

center — 2
o —Jw—gf (56)

wheres; is the cross section areaxet surface {x 2.5 mnf, see Figs. 24 and 21(a)). With the

measured friction coefficient, the total frictional force is obtained:
2f, = 21(0,,32)= o5, (57)

where s, is the contact area oy-z surface between the sample and the clampers

(1x10 mntwith the clamper length of 10 mm, see Figs. 24 2h@)). Substituting Eq. (57)
into Eq. (56), we obtain the compressive streghatsample center (intrinsic stress without

external friction):

yy XX

Ucenter = Uyy_iﬂa 158
S
With Eqg. (58), the intrinsic plateau stress fomfard martensite reorientation (denoted by

or) can be calculated from the nominal plateau stigg$iar:

Uf =0, i/'Io-xx (59)

upp-plat -

During unloading, the sample elongates. So théidrial force is in the same direction as
the applied stress,y. By similar analysis, the intrinsic plateau stresBr reverse martensite

reorientation is obtained

0, = O + 2 O, (60)

r low-plat
S

With Egs. (59) and (60), we can obtain Eq. (61)

upp-plat - low-plat

O pppiat— O :%uaxﬁ(af—ar) (61)
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where the two contributions to the nominal stregstdresis dupp-plat = Glow-play Can be

distinguished: one is related to the energy dissipaf the external frictionZ%,uaxx) and it

is proportional too,, ; the other is the material intrinsic stress-hyesdex ¢r —or), which is

related to the intrinsic dissipation of martensieorientation. Fig. 25(b) shows the
ox—dependence of; ando;. It is seen that the intrinsic stress-hysteresisd,) is almost a
constant: 2winning = 2.4 MPa, where the threshold driving force famt boundary motion

owinning (SO-called twinning stress, related to the intongnergy dissipation) can be

determined aStwinning = (0r — or)/2 = 1.2 MPa.

(a) Raw data (b) After removing the
external friction effects

15 —

14f D O upp-plat '§ ii: O oy (experiments) EE:“:
13+ - Olow-plat % 13+ . 7, (experiments) E:::;
12, ‘g 12_ — Oy =0y + Gm'inning (theury):;:
11F | g 11" % = %% ™ Oginning (theor_v)“-—;
= 10 Eﬁ ] g 103_5 T
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Fig. 25. (a) Nominal plateau stressegdpias iow-piad Of the stress—strain curves,f-ey). (b) Intrinsic
plateau stressesy(o;) calculated with Eqgs. (59) and (60) to removedkternal friction effects. The
theoretical predictions for forward and reversetemasite reorientations (two lines) are, respedgivel

0t = OxxtOtwinning ando; = Oxx™Otwinnings Whereo'twinning =1.2 MPa.

Fig. 25(b) is actually a phase diagram of the nmaite reorientation in NiMnGa single
crystal under 2D compressive stresses. It is ddvisho three regions: two stable regions
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respectively for x-variant and y-variant, and onetarstable region where the material’s state
depends on the loading history.

The effects of the auxiliary compressign on the material’s mechanical behavieyteyy
curve) are similar to that of a magnetic fi¢lg along x-coordinate. In the experiments of
field-assisted super-elasticity (compressi@y with a constant magnetic fielt), the
threshold driving forc@uwinning (= 1.4 MPa) for twin boundary motion and the transfation
straine; (= 6%) due to martensite reorientation are also fointhe constant (Straka and
Heczko, 2003a). While the microscopic structures twin boundaries would have a
significant influence omwinning (Straka et al., 2011b), the macroscopic twin $tmes (i.e.,
the deformation patterns: ‘//’ in Fig. 23(a) and’‘in Fig. 23(c)) have little influence on
awinning IN OUr biaxial tests. Besides 2D compressiongibeussion on 2D tension and general

3D magneto-mechanical loadings can be found ingi-d., 2012).

3.1.4. Conclusions

From the 2D compression tests on single crystal i@&l 5M martensite, it is found that
the material can work at high stress levels (platteess > 12 MPa), which are much larger
than the blocking stress (< 3 MPa) in 1D configiorat At high levels of biaxial loadings,
super-elasticity was observed. Based on the expetsn a phase diagram of martensite
reorientation is obtained, which helps us easiltedgine the material’'s state under various
2D stresses. The energy dissipation due to thetstal external friction is proportional to the
stress levels, while the material intrinsic enedggsipation for twin boundary motion is found
to be constant in all tested 2D stress statestanuddriation of the transformation strain due to
martensite reorientation is negligible (< 15%). 3ddindings imply the possibility of using

FSMA in multi-axial magneto-mechanical loading ciioas.
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3.2. Biaxial magneto-mechanical tests

3.2.1. Material and experimental procedures

Recent 2D/3D energy analysis (He et al., 2011, P@hPws that FSMA in multi-axial
loadings can have high levels of working stresgi{@r than the blocking stress in 1D
configuration). To verify this theoretical predmti, the 2D magneto-mechanical tests are
reported in this section.

The samples of single crystalline shliMnysGai5 alloy used in the previous 2D
compression tests are also used here. Fig. 26 stmmsxperimental setup of 2D magneto-
mechanical tests at room temperature. Two constamipressive stresses (i.eyy alongy-
coordinate andyy alongx-coordinate) are applied respectively by a dead (sae Fig. 26(a))
and a lever system (Fig. 26(b)). The strginalongy-coordinate is determined asy = Al/lo,
wherelg is the gauge length of the sample, ahds the vertical displacement of a plate fixed
to the top of the sample (see Fig. 26(a)).is measured by a laser displacement sensor
(Keyence LK-G37:2£0.005um within £5mm). All the mechanical loading systems are made
up of non-magnetic materials (aluminum or brass). édectromagnet (Varian Associates
Model V3400-260) is used to generate a uniform retigriield Hy alongx-coordinate in the
volume of 35x 35 x 35 mn¥. The applied magnetic field strength is monitdpgcthe electric

current passing through the wire of the electronreign

Before each test, a dead load of 1 kg (compressiess of 4 MPa) is applied alogg
coordinate in order to guarantee that the sampleé ishe initial state ofoy-preferred

martensite variant. During the tesj, andayy are fixed at certain levels, while the magnetic

field poHy is cycled betweer: 0.75 T at a rate 06x10°T/s (i.e., frequency: 0.002 Hz).
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Fig. 26. (a) Schematic diagram of the 2D magnetohanical setup. (b) Lever system for applying
the compressive stresg.

3.2.2. Preliminary results
Figure 27 shows the magnetic-field-induced strandifferent levels of compressive

stressesdkx andoyy). It is seen that the maximum working streg$™ (stress over which no
strain change is observed) increases with incrgasin o, = 1.6 MPa aty = 0 MPa (Fig.

27(a)), 0, = 4 MPa aby = 5 MPa (Fig. 27(b))g,*= 5.5 MPa atw = 10 MPa (Fig. 27(c)).
As predicted by the recent 2D/3D energy analysis éHal., 2011, 2012), the auxiliary stress
oxx helps increase the working stress

It is also seen from Fig. 27 that there is litB@ersible strain in the 2D configurations. The

main problem for obtaining reversible martensirientation (leading to reversible strain) is

the structural external friction, which will be disssed in the next sub-section.
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Fig. 27. Magnetic-field-induced strain at differéenels of constant compressive stressgsafidoy).

3.2.3. Structural external friction

The material requirement for obtaining the nonintgfield induced reversible martensite
reorientation has been derived in Chapter 2 by(ED): K, / €0 > 20winningg Which means that
the maximum magneto-stress (i.e., ratio of the raigranisotropic energi{, to the strain
changes due to martensite reorientation) must be largen tine material intrinsic hysteresis

(i.e., Zwinning due to martensite reorientation). If the strudtueaternal friction in 2D

configurations is also considered, the materialiiregnent can be modified as:

external

25twinning + O-hysteresis

The external stress hysteresi§e;. has the following two contributions:
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(1) oo due to the friction between the horizontal loadimepd and the sampleisz

ysteresisl
surfaces (see the insert of Fig. 26(a)).
This contribution has already been identified by 1) in the previous 2D compression

tests:

external

Uhysteresisl = ZEIJUXX 396

whereyu is the friction coefficient (uniform distributioof the frictional force is assumed,

(=1x 2.5 mnf) is the cross section areaef surface and, (=1x10 mn?) is the contact area
of y-z surface between the sample and the horizontairigdeead (with the head length of 10

mm, see Fig. 26(a)).

(2) Opemesic due to the friction in the lever system (e.g.wesn the rotating hinge and the

lever, the pulley and the rope (see Fig. 26(b®,|&ver-supporter and the lever, etc.)

To measure the total frictional momewj against the lever motion, additional test is done:
in the pure lever system (Fig. 26(b)), dead loadare successively added until a critical
weightm; when the free end of the lever rotates. Fig. 28wshthe results, from whiahm is
obtained (= 156 g) and the frictional moméfjtcan be determined as:

My =M g Liever With Liever length of the lever

lever- momen
friction

Then the frictional stresg applied by the frictional momey on the sample’y-z

contact surface (areas, located in the middle of the lever) is:

lever- moment_ 1 = M y - 2 rnc g

T friction -
S I'tever/ 2 S

From which the stress hysteresis (two times tlotidmal stress) can be obtained:

Ohime =40 (64)
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Fig. 28. Lever movement at different weights ofdléaad. ‘0’ means the lever stays; ‘1’ means it

moves.

Based on Egs. (62), (63) and (64), the materialiremqment for obtaining magnetic-field-

induced reversible martensite reorientation in 2DBfigurations is:

K,/& >20 + 2§,uaxx+ 49 (65)

twinning %
For our 2D magneto-mechanical tests, we calcukath &erm in Eq. (65) as follows:
m From the material property (Heczko et al., 200Qridy et al., 2000K /e =~ 3 MPa.

m From the previous biaxial compression testgyiming ~ 2.4 MPa.

m With the known parametersZ(E uo,, + 4@) Is calculated adyx = 5 MPa:
S S

2% g, +a™9= 2 10, 6 gg5c 5 419071008 98 ) yp
S S 1x2.5 1x 10

whereu is assumed to be the same (= 0.095) as the frictaefficient measured in the
previous 2D compression tests, because the clampedsin the previous tests (see Fig. 21(a))
and the horizontal loading head used in the cutests (see Fig. 26(a)) are made of the same

material (brass).
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It is seen that Eq. (65) (i.e., 3 > 2.4 + 4.4) doesstand, so there is no reversible strain in
the 2D magneto-mechanical tests. We can try toldle total external friction by changing

the length of the horizontal loading head $s changed):

(Zi O'XX+4MJ =4 Z—ﬂmgaxx at s, = 2_!'@ 9
S S i V 3 \ Lo,

With oyx = 5 MPa, we haveEZi o, 4Mj =3.0 MPa ats, = 4 4 mh (with length
S-l 52 min

of the horizontal loading head: 4 mm). Still Ech)Y@i.e., 3 > 2.4 + 3.0) does not stand.

3.2.4. Summary and prospect

2D magneto-mechanical tests (magnetic field withxial compressions) are reported.
Preliminary results (Fig. 27) show that the worksigess of FSMA increases with increasing
the auxiliary stress.

The material requirement (Eq. (65)) for obtainiig treversible magnetic-field-induced
strain in the current 2D configurations is deriviéds found that the reversible strain cannot
be obtained in the current 2D magneto-mechanistd.tdwo possible solutions are proposed:
(1) Change the 2D mechanical loading system to rethecexternal friction

The external friction of the current 2D mechanilcalding system has been reduced to its
minimum by surface polishing, graphite lubricatifiglfon sticking to some contact surfaces,
etc. However the external friction is still too darto allow the reversible strain. So it is
suggested to change the mechanical loading systdmmuch smaller external friction.

(2) Change the FSMA sample to reduce the intrinsitengsis

The samples used in the experiments contain Tyjénl with twinning StresSswinning

around 1.2 MPa. Recently, Type Il twin withyinning around 0.1 MPa was discovered

(Sozinov et al., 2011; Straka et al., 2010, 201$8amples with Type Il twin will have much
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smaller intrinsic hysteresis d&inning), SO at some stress levels they can satisfy therrah

requirement (Eq. (65)) for reversible strain.

3.3. Chapter conclusion

2D mechanical and magneto-mechanical tests aretegbm this chapter. It is found that
the twinning stressuwinning for twin boundary motion and the transformatioraist due to
martensite reorientation are constant in all te2Bdstress states. Moreover, preliminary
results show that the working stress of FSMA cambeeased by the increase of the assistant
stress. These experimental findings imply the pgyi of using FSMA in multi-axial
loading conditions. To predict the magneto-mectarbehaviors of FSMA under multi-axial
loadings, a 3D constitutive model must be develppéduch is the topic of the next chapter

(Chapter 4).
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The large strain in Ferromagnetic Shape Memoryylig=SMA) is due to the martensite reorientation
driven by mechanical stresses and/or magnetic sfieldthough most experiments studying the
martensite reorientation in FSMA are under 1D cbodi (uniaxial stress plus a perpendicular
magnetic field), the energy and experimental amslyasf the previous chapters have shown that the

93



2D/3D configurations can improve the working stresgl give much flexibility of the material’s
applications. To predict the material's behaviors3D loading conditions, a constitutive model is
developed in this chapter, based on the thermodigsawf irreversible processes with internal
variables. All the tetragonal martensite variames@nsidered in the model and the temperatureteffe
is also taken into account. The model is able &cidee all the behaviors of FSMA in the existing
experiments: rotating/non-rotating magnetic-fieldticed martensite reorientation, magnetic-field-
assisted super-elasticity, super-elasticity undaxidl compressions and temperature-dependence of
martensite reorientation. The model is further usestudy the nonlinear bending behaviors of FSMA
beams and provides some basic guidelines for degigine FSMA-based bending actuators.
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4.1. Introduction

In literature, most of the experiments studying itiertensite reorientation in FSMA were
conducted in a simple loading condition: a uniaxi@chanical stress plus a non-rotating
magnetic field or a rotating magnetic field (elgaraca et al., 2006; Mullner et al., 2002;
Straka and Heczko, 2005). However, the uniaxiaisstis limited to a few MPa (Heczko et al.,
2000; Murray et al., 2000), which leads to the Isiness output of FSMA-based actuators.
Recent 2D/3D energy analysis (He et al., 2011, @h2wed that FSMA can work at high
stress levels in 2D/3D configurations (multi-axstiesses with a magnetic field). In the recent
experiments of biaxial compressions on FSMA (Cherale 2013), it is found that the
material intrinsic hysteresis and the strain chashge to martensite reorientation are constant
under various 2D stresses. These findings imply B&MA under multi-axial stresses still
keeps its advantages low intrinsic dissipation and large reversibleastr In order to predict
the material’s behaviors under general multi-axigigneto-mechanical loadings for the
practical use (especially in complex structureg),c®nstitutive models of FSMA martensite

reorientation are demanded.

4.1.1. Literature review of models

A number of constitutive models for FSMA marteasiorientation have been proposed,
emphasizing different aspects of the material’sabedrs. Micromagnetics models are focused
on studying the fundamental mechanism of the nat®rbehaviors in microscopic scale.
James and Wuttig (1998) and DeSimone and Jameg)(#@0eloped a constrained theory of
magnetostriction, which can qualitatively predice tmagnetic-field-induced strain in FSMA
(Tickle et al., 1999). Phase-field models (e.gy, 2009; Li et al., 2008, 2011; Mennerich et

al., 2011; Zhang and Chen, 2005) have been dewtldpe choosing different order
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parameters, which provide elegant descriptionshefdvolutions of magnetic domains and
martensite microstructures.

Energy models aim at understanding the origin oft@msite reorientation through energy
analysis. O’Handley (1998) studied the magnetitfieduced martensite reorientation
between two variants separated by a single twimbary. The driving force for the twin
boundary motion is identified as the magnetic epeatifference between the two variants.
Later on, Murray et al. (2001) introduced the dffefcuniaxial stress by adding a mechanical
potential. The two variants abruptly switch to eather when the difference between the
variants’ energy (mechanical potential and magnetiergy) changes its sign. The model is
limited by its assumption that the magnetizatiostoein each variant is always along the
magnetic easy-axis (i.e., no magnetization rotati@chanism). In the model of Miillner et al.
(2002), the magnetization vectors are free to eotBuring magnetic field rotation (without
mechanical stress), variant switching takes plaegogically when the magnetic energy
difference between the two variants changes its. $fig et al. (2011, 2012) proposed a more
systematic study of variant switching under mukiad magneto-mechanical loadings, in
which the hysteretic effect is also considered. dbript variant switching happens when the
difference of variants’ energy reaches a threshble: model offers quantitative predictions
of the switching field/stress/angle. In the modelighachev and Ullakko (2000), a magnetic
driving force on twin boundaries is proposed as rtite between the magnetic anisotropy
energy difference of the two variants and the stchiange due to the martensite reorientation.
The macroscopic strain is assumed to be determyethe driving force (mechanical or
magnetic), so the stress-strain curve from the tdstcompression-driven martensite
reorientation can be used to predict the straintdude martensite reorientation driven by a

magnetic field (magnetic driving force). Based brs tapproach, several models have been
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proposed to predict the martensite reorientatidwéen two variants under different loading
conditions (e.g., Kiang and Tong, 2005, 2007; Strakd Heczko, 2003a).

Statistical models, describing statistically théuwe-fraction evolutions of the martensite
variants, can predict macroscopic behaviors ofntla¢erial. In the model of Glavatska et al.
(2003), an effective stress (linear combinationnggchanical stresses and magnetic-field-
induced stress) is used to represent the magnetbhamigal loadings and the probability of
variant switching at an effective stress level esatibed by a statistical distribution. The
model, considering two martensite variants, pravigeantitative predictions of the material’s
strain evolution in a magnetic field and its streBain behaviors under constant magnetic
fields (Chernenko et al., 2004; Glavatska et &003). Some other models are developed
based on the assumption of thermally activatedamarswitching (Buchelnikov and Bosko,
2003; Krevet et al., 2008; O’Handley et al., 200@here the rates of variant switchings are
related to an energy barrier. By properly settimg ihodel parameters, these models can show
guantitative agreement with the experimental olsens.

The approach based on thermodynamics of irreversgitdcess is capable of describing the
dissipative processes and the loading path eff@ttthe material’'s behaviors. The so-built
thermodynamics models, combining the macro-scadentbdynamics and the micro-scale
ingredients by introducing the internal state Malea, can give a better quantitative prediction
of the material’'s macroscopic behaviors. Many med#lthis kind have been proposed for
conventional shape memory alloys (e.g., Boyd angbldas, 1996; Lexcellent et al., 2000;
Moumni et al., 2008; Zaki and Moumni, 2007 amongynathers). For FSMA, Hirsinger and
Lexcellent (2003b) first proposed a constitutive d@lo of 1D (uniaxial stress with a
perpendicular magnetic field) for martensite remia¢éion between two variants. In their
model, the magnetization vectors of the variangsaasumed to be fixed at the magnetic easy-

axis. Later on, Creton and Hirsinger (2005) andt@Giauet al. (2007) proposed models where

97



the magnetization vectors are allowed to rotatefdfi and Lagoudas (2005, 2007, 2009)
developed a more systematic model for martensdeam/ation between two variants. The
magnetic domain wall motion and the magnetizatmiatron mechanisms are considered by
the internal state variables. The model is goodralating the macroscopic magneto-
mechanical behaviors of the material to its midraetural evolutions. Auricchio et al. (2011)
proposed a 3D model with all the three martensdagants involved. An affine relation
between the magnetization vector and the transfwmastrain tensor due to martensite
reorientation is introduced. The model can giveualitative prediction of the material’s
behaviors under certain loading conditions. Regellang and Steinmann (2012) proposed a
model by variational approach. Their model takdée ronsideration the geometry effect of
the sample and captures most of the charactefesttares of the material’s behaviors in 1D
loading conditions (uniaxial stress with/withoyp@pendicular magnetic field).

Generally speaking, in literature there is no readial model which is able to predict the
material’s macroscopic behaviors in all the exgslimading conditions and which is ready for
use in 3D structural analysis. Most existing models dealing with two martensite variants
and limited to 2D loading conditions, because ahmatcal stress or a magnetic field in the
third direction will introduce the third martensi@riant. There are models dealing with all
the three tetragonal variants (e.g., Buchelnikay Basko, 2003; Gauthier, 2007; Krevet et al.,
2008), but they have been developed in 1D configamaand they are not validated in more
complex loading conditions (e.g., rotating magndigtd, biaxial compressions, magnetic
field with biaxial stresses). Furthermore, mosttlod existing models are limited to static
loadings. In high frequency magnetic loadings, terafure variation in the FSMA samples
can be significant due to the mechanical intrirtbgsipation and the heat from eddy current
(Henry, 2002; Lai, 2009). And FSMA martensite reatation is sensitive to temperature (e.g.,

Heczko and Straka, 2003; Straka et al., 2006). Hewdew models in literature consider the
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temperature effect on the FSMA martensite reortertain Gauthier (2007), two model
parameters are expressed as a function of temperatd only qualitative predictions are

given.

4.1.2. Outline of chapter

This chapter proposes a thermodynamics model toridesthe martensite reorientations
among the three (5M) tetragonal variants in Ni-Ma-Gingle crystals in 3D magneto-
mechanical loading conditions. The model is buiithim the framework of generalized
standard materials with internal constraints (Hatptand Nguyen, 1974; Moumni, 1995;
Moumni et al., 2008). The temperature dependenamastensite reorientation is also taken
into account. Containing a few state variablesnoelel can be easily incorporated into finite
element analysis for 3D structural calculations.

The remaining parts of the chapter are organizefblamsvs: Section 4.2 is devoted to a
short introduction of the theoretical framework ahd detailed development of the model. In
Section 4.3, the material’'s behaviors under varitmaling conditions are simulated and
compared with the experiments in literature. Theperature dependence of martensite
reorientation is considered and simulated at thee @nthis section. In Section 4.4, the 3D
constitutive model is incorporated into finite eksmh analysis to predict the nonlinear bending
behaviors of FSMA beams. The specimen-geometryctsffand the material anisotropic
effects are systematically studied. Finally, a gaheonclusion is given in Section 4.5.

Remark for the representation of the parameteedasparametex ; vector parametex ;

tensor parameter of orderx, tensor parameter of ordend
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4.2. Magneto-mechanical model of ferromagnetic sipg memory alloys

4.2.1. Introduction of generalized standard materiés with internal constraints
(Halphen and Nguyen, 1974; Moumni, 1995; Moumni edl., 2008)

The thermodynamic state of a material can be definea set of state variables: stress
(or straing ), absolute temperatufi irreversible internal variableswhich are related to the

dissipative mechanisms, and reversible internaliabbes g related to non-dissipative

mechanisms. The material's Gibbs free energy degs given by:,g =g(g, T, ¢, f). The
state variables are assumed to be subjected foltbwing internal constraints:
k(g ,a,8) =0 wherm=1, 2,....M (66a)
hi(g,a B)=0 whera=1, 2,....N (66b)

The perfect internal constraints (Eq. (66)) canléeved from a potentidiv:
M N
=D Ak = 2 o, (67)
m=1 =1

whereln (M= 1, 2,...,M) andu, (n = 1,2,...,N) are the Lagrange multipliers,, associated
with the unilateral constraints (Eq. (66b)), mwsisy the following requirements:
un>0, uhn=0 whera=1, 2,....N (68)
Let the Lagrangiatd be:.Z= g+ W . Then the generalized forces associated witlsttte

variables can be derived as:

£= g”g mZA ”’+Z/Jn (69a)
aZ

a=-2- ZA ;un (69b)
_ oz _ 0

B=-35" "33 mz- a/f nz’”’”aﬁ (69¢)

Then the intrinsic dissipation can be expressed as:
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D =A@ +BIp (70)
whereA andB are the thermodynamic forces associated withrtteznal state variablesand
B, respectivelyB must be null becauggis related to non-dissipative mechanisms. Theeefor
the intrinsic dissipation (Eq. (70)) can be reduteed

D= Al (71)

For standard generalized materials (Halphen andy®&gul974), there exists a convex

non-negative functiomﬁ(g,é), so-called pseudo-dissipation potential. The tloelynamic

forcesA belongs to the sub-gradient.sf with respect toﬁ :

A0 .0 (72)
da

For a pseudo-dissipation potentia? whose minimum Fni, = 0) is atQ:O, the

requirement of non-negative intrinsic dissipatidty.( (71)) is automatically satisfied. The

directional derivatives of2 (Eq. (72)) define a yield surface limiting a convéamain of
admissible forces. IA is inside the domainé is null; if Ais on the yield surface, the

normality rule holdsz is proportional to the external normal of the damai

4.2.2. State variables and internal constraints

The absolute temperatufe the Cauchy stress tensgrand the internal magnetic field
strength vectoH are the state variables. There are three marteveitants in 5M Ni-Mn-Ga
single crystals (see Fig. 1 in Chapter 1), andrthelume fractions are respectively denoted

by z1, z, z3, which are chosen as the internal state variadibs. internal variables must

satisfy the following physical constraints:
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m The material is in the martensitic phase. So tha sf the volume fractions of all the
martensite variants must be equal to 1 (100%).

z1+2+2z3-1=0 (73)
m Martensite variant volume fractiorng,(z, z3) cannot be negative:

z>0 where=1,2,3 (74)

The constraints are assumed to be perfect. Theratoey can be derived from a potential

W defined as:

Wi = Az + 2+ Z3— 1) 1121 — pioZo — piaZs (75)
wherei, 11, 2 andus are Lagrange multipliers. By Eq. (68), x> andus must obey:

Hi = 0, HiZi = 0 wheré=1, 2, 3 (76

4.2.3. Formulation of Gibbs free energy density
The Gibbs free energg has four contributions: thermal energye mechanical energy
Omee Magnetic energymag and interaction energy,: due to the incompatibility among the

martensite variants.

g = gthe+ gmec+ gmag+ gin (77)

4.2.3.1. Thermal energy

The thermal energgihe is expressed as:

00e(T) = PC,(T= T = Tin() (78)

0
wherep is the mass densit, is the specific heat capacity, which is assunodaetthe same

for all martensite variant3j, is a reference temperature, e.g., it can be thedbtemperature
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where the magnetic-field-induced strain can be fesk The choice ofy has no influence

on the constitutive equations.

4.2.3.2. Mechanical energy

The mechanical energyecis composed of the elastic eneigyss and the combination of

1 v2
e po’ g me po

and g*°_ of the variants (He et al., 2011, 2012):

me [

the mechanical potentialg

Onedl@: 2,2, 3)= Qud@)* 28 bl + Z G J@)+ 26 @) (79)
m Elastic energy

The Gibbs free energy related to the elastic enistgy

(80)

S

1
g)=-=0:
gEIaS(=) 2=

len

where Sis the elastic compliance tensor of the martensite.

m Mechanical potentials
Based on the martensitic transformation from thieicaustenitic phase to the tetragonal

martensitic phase, the transformation strain tensor, U and U, of the variants can be

obtained as:
U =-celeg+e, gl g+e, el e for variant 1 (81a)
U,=¢e,el0e-c. 60 g+, el ¢ for variant 2 (81b)
U.=eellgte, gl g6, el _¢ for variant 3 (8t)

whereg,, g, ande, are the unit vectors respectively alongy- andz-coordinate of the parent

austenite latticeg, ande. are expressed as:
£, =(a-a)l g (82a)

£=(a-0)/g (82b)

103



q is the length of the cubic austenite unit calgndc are respectively the lengths of the long

and short axes of the tetragonal martensite ufli{fssse Fig. 1 in Chapter 1). The mechanical

potentialsgy, . U noand gy, , of the variants are:
Ome p(@) =-0:U =0,£ -€ [0 +T ) for variant 1 (83a)
e @) =-a:U =0 -0 ,+0 ) for variant 2 (83b)
O (D) =—0: U=0g-¢cfog0o) for variant 3 (83c)

From Egs. (79), (80) and (83), the Gibbs free endemsity of the mechanical part is:

gmec(g' 4, %, %): _%g:=8g+ daxxgc_‘ga(ayy-l-a-zz))-i- 240- y§ <€ E(J zii-a y)<)

(84)
+ 23 (O-ZZSC_ga O(XX+ J yy ))
4.2.3.3. Magnetic energy
The magnetic energy densBhag Stored in the material is (O’'Handley, 2000):
a7
Eveg ) = [ 1o H M (85)

where is the vacuum permeabilityzZ is the magnetization vector. The dual-energy (Gibb

free energy partgmag related to the magnetic energy) is obtained by Ltegendre

transformation:
H
gmag(ﬂ) = _IO ﬂoz m—h (86)
The magnetization vectqrZ_is an extensive variable (Maugin, 1999). At a genmaterial

point, 7 is the linear combination of the magnetizatighs, 74 and74 of the variants:
=0T+ 275 + 1.0 (87)

With Eq. (87), Eq. (86) can be rewritten as:

Oneo(H. 2.2, 2) =~ 2wl Ok i, 00w §lugr 0 (©9)
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Let H be the magnitude of the magnetic field strenlyth,M, andM3; be the magnetization
components along the field for variant 1, 2 ande8pectively. For the magnetization process
(i.e., magnetize the material by the increase efrttagnitude of a magnetic field in a fixed

direction) of each variant(i = 1, 2, 3), we have:
[ o wh= " M, dh wherd = 1, 2, 3 (89)

The magnetization curve of each variant can beatined as shown in Fig. 29, where the
slopeg; (i = 1, 2, 3) of the approximated line is the magnstisceptibility of variant Then

the magnetizatioM;, M, andM3 of the variants can be expressed as:

aH (0sH< MS)
M,(H) = % rfaariant 1 (90a)

M,(H) = % foariant 2 (90Db)

M
a,H (0sH<—)
8

M,(H) = M rf@riant 3 (90c)
M, H=>=—)
&

whereMgs is the saturation magnetization. The magnetic gudskty a (i = 1, 2, 3) reflects
the overall effects of the magnetic-domain-wall ime$ and local magnetization rotations on
the global magnetization process (Likhachev andKklit, 2000). The piecewise Eq. (90) can

be rewritten as:

M,(H)=a,H +<H_I\;I:>(Ms_a1H) for varidaht (91a)
M,(H)=a,H +<H_'\::>(|\/|S_a2|-|) for varight (91b)
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M
M,(H) = a,H +<H - a:

>(|\/|S - azH) for variggt (91c)

where(x) = {0, if x<0; 1, ifx> O}.

H

Fig. 29. Linear approximation (dashed line) of thagnetization curve (solid line) for martensite
varianti (i = 1, 2, 3). The slopa of the approximated line is the magnetic suscéjyilof varianti;

M; is the saturation magnetization.

With Egs. (89) and (91), the magnetic energy (B§))(can be calculated as:

3

Oreg(H: 2, 2, %)=-(; z{% H+< FF%>(uo R "2'\;'5 )D (92)

4.2.3.4. Interaction energy
The proposed expression of the interaction engggys similar to the energy contribution

due to the linear kinematic hardening of an elaéastic material:

0u(2:2.2)=5 K2+ 2+ 2 93)

wherek is the interaction parameter, whose detailed iphlysterpretation will be given in

sub-section 4.2.6.
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4.2.3.5. Expression of Gibbs free energy

With Egs. (78), (84), (92) and (93), the final eegsion of the Gibbs free energy (Eq. (77))
is:

9(T.g.H,7, 2, %)——lg :_Sg

2
[ 06 +E, a(+azz+)—%H2 H- MS>%MSH—#°—;1H2—’U°2':: })

—23( 0,8, +E, 0(,+0 wL)—%H2 <H
T CEAE +)pq[ 7T térroj

262
Hods o HMS
>pg|v||—| oo H 263 },

4.2.3.6. Expression of Lagrangian

The Lagrangiar¥ of the material is composed of the Gibbs free gnédensity (Eq. (94))
and the potential related to the internal constsai&q. (75)):

L(T.0.H.2.2, %)——1 So

] (95)

e, Ol r o, ) R H

g-
[ £+£ a(zz+0-xx+)_%H2
k

N RT: a(xx+ayy+)—%H2 <H >pg|v|H ”°a3H2 ”°M j
T
i?.(

H- >ngH ”02""2H2

A+Z+ Zﬂp(;(T T- T )] Mz + 2+ =10 =14 2—4, 2—H5 3

4.2.4. State equations

From the Lagrangian (Eqg. (95)), we obtain the fellty state equations:

m Stress—strain relation
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oL
*(le Z, %)__6_0'_ Sg+ _gc_ﬁlj_xei-ga_yéj_ye-ga_za_z)(

(6.6 06-¢6.60 g+e, 0 g (96)
z(e.6 08+, 60 -6, ¢0_4d
The martensitic phase is assumed to be elastitatyopic with Young’s modulug€ and

Poisson’s ratio. Then Eq. (96) can be rewritten as:

£1(0.% 2, )= g —(r0)

+z(-s,6 0 g+s, 60 g+e, el_4g

A
+22(£a_e; D_Q—gc_@D_g+ga_§D_§
tz(e,6 0g+s, 60 ¢-5,_e0 ¢

719

where (rg) is the trace of the stress tengor | is the identity tensor. Let”, Z” and 2"

denote the initial volume fractions of the martemsiariants. Then the initial strai;n*(o) is:

£*(o) (g(O) :9’ Zl(o)’ Z;o)' éo)) — éO)(_gc_ﬁm e+ 5a_ﬁD _Pre. & 2)3
+z§°)(£a_e; Deg-¢.6 D_g+£a_§D_§ (98)
+29 (ga_e; De+ee Ue-660 _ez)

In the small strain approximation, the strain clesagduring magneto-mechanical loadings

can be calculated from Egs. (97) and (98) as:

£(0,2,2,3)=*-£*" =
&80 g+e, g0 pre, g
g, el e-¢g el e+e, g1 9
f£60g+e. g0 p-e 4

(99)

+
—_~ A/~

N&
vvv
’\/—\A

Let z15, 3 and z3; denote the volume-fraction transformations betweenvariants (see
Fig. 30). Then the current volume fractiors, (z, z3) are related to the initial volume

fractions 2%, 2%, 2?) by:

z=2-12,+ g for variant 1 (100a)
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z,=27-z,+ 7, for variant 2 (100b)

z,=22-z,+ 2, for variant 3 (100c)

With Eg. (100), the strain tenser (Eq. (99)) can be expressed as:

1+
60,252 )=~ g2 (0) 1+ 2,(g,. 00 e, g0 _g

(101)
+223(50?3/ D_Q,—fo_%D_Q)’f ;1(50_@_ &y @_ >)5
whereg is expressed as:
a-c
E,=E,HE =—
2 0Q)

go IS the strain change due to martensite reoriamtgtkaraca et al. 2006). The mathematical
expressions of; ande. are given in Eq. (82), and the lattices lengihs andc are illustrated

by Fig. 1 in Chapter 1.

Fig. 30. Martensite reorientation among three vasigVl, V2, V3).z, (23 Or z3;) denotes volume-
fraction transformation from V1 (V2 or V3) to V2 8r V1).

m Magnetization—-magnetic field relation

1L

3
MH,z,2,2)=————= H-( H
H.z,2, 2) o oh gz(a <

M
s _ 103
q>(M aHJ (103)

m Thermodynamic forcel;, A, andAs respectively related to the volume fractiansz, zz
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The internal constraints (Eqgs. (73) and (74)) adpend on the dissipative internal state
variables %1, 2, z3), so the related thermodynamic forcés, A,, As) can be directly obtained

from the Gibbs free energy (Moumni, 1995; Moumnalet 2008):

A H2)=-B = ig-0,6,+£,0,+0,)
92 (104a)
+/'Ia'_l_H2+ H_Ms ,UgM H_lan:LHZ_lqusz
_% a ° 2 2a,
Az(g'ﬂ’22):_a_g:_kzz_ayygc+£a(azz+ax>)
9z, (104b)
+lua'2H2+ H_Ms /JgM H_/'IOaZHZ_lquSZ
3 a, ) 2 28,
Ag(g,u,zg):—§—Z=—ké—azzsc+ea(axx+aw> 0
104c

2
+ ﬂ§a3H2+<H_I\::> %MSH_/'[OZa:EHZ_/'(OZ,::

4.2.5. Evolution laws of internal state variables

The martensite reorientation is assumed to be thesmurce of energy dissipation. So the
intrinsic dissipatiorD can be expressed as:

D=Az+Az+ A3 (105)

Whereil, z2 and z3 are the ratesf the volume fractions. Lezl2 : z.23 and z;ﬂ denote the rates

of the volume-fraction transformations (see Fig, 8@enz , z, and z, can be expressed as:

z,=-7,+ 2, (106a)
Z,=-2,+ 1, (106b)
2,=-2,+ 2, (106c)

In EQ. (105), replacél, z2 and z3 with Eg. (106) and we obtain:
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=(-A+A) z+(- A+ A) 24(- A+ A 3z, (107)

We define A;o, Axz and Az; as the thermodynamic forces related to the matéens

reorientations respectively between variants (1(2)3) and (3, 1):

AlZZ_Al+A2: k(%_ %)+£O(O'XX—0'W)+ §£_H

O@k)
As=-A+A=Kz- g+efo,-0,)+ E{H (108
Ay=-A+A=Kz- g+efo,-0,)+ E( B Ogk)

To obtain Eg. (108), Eg. (104) has been used ®eipressions &, A, andAs. In Eq. (108)

Ei12(H), Ex3(H) andEs;(H) are the magnetic energy differences respectivetween variants
(1, 2), (2, 3) and (3, 1):

Elz(u)=—<@H2+<H >(quH o8 e o <)

A (109a)

Oa <H > (JOM H /'IOaQ H2 /’I()Zazs )

23(H)_ (IUOaZH <H MS>( M H IanZ H2 :uo s ))
2a2 (109Db)

°a3H +<H > oM H - ”"aSHZ ”0 Cy

Ey(H) = ~(F0% 1 +<H >(ﬂo H- ey o S))

(209c¢)
Oa:LH +<H_ >K’10M H luoalHZ :uozals )
With Eq. (108), the intrinsic dissipatidn (Eqg. (107)) can be rewritten as:
D=A,z,+ A2+ A % (110)

The martensite reorientation needs to overcome sntemal frictional force, known as

twinning stressm (Heczko, 2005; Heczko et al., 2006; Likhachev diidkko, 2000). So the

pseudo-dissipation potentia® of the martensite reorientations among threeansi can be

proposed as:
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D =062, |+ 125 |+ |2, | (111)
where X| denotes the absolute valuexpty, the strain change due to martensite reorientation

is mathematically expressed by Eq. (102). By ER),(the directional derivatives of define

the yield surfaces for the thermodynamic foraes A,z andAg::

A,00.7 = |A, k0,8, (112a)
A,00.20 = |AE0.5 (112b)
A0 . D = |A KO8, (112c)

Based on EqQ. (112), the vyield functions associatéti the martensite reorientations
between variants (1, 2), (2, 3) and (3, 1) are psep as:

F :|An |-, & wherei(j, ¥ (1,2), (2,3), (3
m If F; <0, no martensite reorientation between variiantd]. So zl =0.
mif F,=0 andfij < 0, no martensite reorientation betweemd;. zJ =0.
mlf F=0(.e,|A Fqg,&) andlfij =0 (i.e.,A'}J. =0), martensite reorientation betweeand
j exists. With Egs. (106) and (10&}1., is given by the consistency condition k‘q]f: 0:
a,j)=(@, 2):2;2 =2—1k(£0(&xx—&yy) + Ez(ﬂ)) martensite reorientation between V1, {#2L.3a)
,)=1(2,3): 2;3 =2—1k(50(&yy—&zz) + Ezs(ﬂ)) martensite reorientation between V2, {313b)

@,))=(3,1): 2;1 =2—1k(80(&zz—&xx) + El(ﬂ)) martensite reorientation between V3, {41.3c)

Summary

The complete model consists of the following cdnstie relations:
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m Stress—strain relation

1+
60,252, )=~ g2 (O) 1+ 2,(g. 90 e p0_g
+223(‘90_ey D_@—EO_(;D_Q)+ i(go_g]_?'go_ @_ >)E

m Magnetization—-magnetic field relation

M
H—=)( M-
q>(M FiHJ

m Thermodynamic driving forces for martensite reataions

M(H,z,z, 73)=§ z( aH*<

A, =k(z- z)+&(0,-0,)+ BB
As=kK(z- z)+e(0,-0,)+ BE{H

A’sl = k( 23 - %) + go(a-zz _Uxx) + gl(_l—)

where:
Elz(_)——('uoalH +<H >(,UOM H- /uoal H2 :uozals ))
0 2 /'IOaZ 2 /'IO S
HZ+(H - M H -2 H )
Ak o
E23(_)__(Iuoa2H +<H Ms>( MH_IUOaZ H2 ,UO s))
282
OaGH <H > M H lanBHZ IUO s \
Ko 2, ),
()= e - > M H -2 e HoM,
E.(H)=-(=~ (1M %, ))
Oa1H2+<H i > M H £y M
2 2 23,

m Evolution laws for the volume fractions of the ieaits

When A12| =oweo andAl2 =0, z'12 :2_1k (fo@x —&yy )+ o (H));
When P3| =oweo andA.23 =0, z'23 =2_1k (go(&yy—&zz)+ Exs (H));

. . 1 . . .
When Azi| =owmeo andA,, =0, 231:E E,0,—0x)*+ B1(H)).
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Z=-7,t2, 35— 3+ %, F- # 2

2>0,2>0,2z>0,z++z=1

4.2.6. ldentification of model parameters
The involved parameters in the model are listedwel
m E: Young's modulus.
m v. Poisson’s ratio which is assumed to be 0.8 commonly used metals is around 1/3).
m ¢o. Strain change due to martensite reorientation.
m ki interaction parameter representing the incompiyilamong the martensite variants.
m oy twinning stress (considered as the internalibmal force or threshold driving force for
martensite reorientation).
m Mg saturation magnetization.
m a3, &, ag. magnetic susceptibilities of the three martengteants.
Three basic experiments are required to compleketgrmine the model parameters above:

uniaxial compression test, magnetization testsgafoagnetic easy- and hard-axis.

4.2.6.1. Uniaxial compression test

This experiment is for identifying the Young’'s mdasi E, the strain change, due to
martensite reorientation, the interaction paramiet@nd the twinning stress,. The material
in the initial state of V1 (with short-axis alomxegcoordinate) is under a uniaxial compressive
stressayy along y-coordinate (see Fig. 31(a)). Martensiwieatation from V1 to V2 (with
short-axis along-coordinate) is induced and the resulted stresgasturve gyy—¢yy) is shown

in Fig. 31(b).
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Fig. 31. (a) Martensite reorientation (from V1 t@Mnduced by compressive stregs (b) Stress-
strain curve 4,,—¢,,) of martensite reorientation under compressiorungss moduluss, strain change
& due to martensite reorientation and interactiaapeterk are illustrated on the figures ando; are

respectively the start and finish stresses formbeensite reorientation.

By linear approximation of the strain-stress cubefore martensite reorientation, the
Young’'s modulusE is obtained (see Fig. 31(b)). Furthermore, thairstchanges, due to
martensite reorientation can be identified as theolte value of the residual strain after
unloading (Fig. 31(b)). By the evolution laws irdueed in sub-section 4.2.5, during
martensite reorientation from V1 to V2, the assiedahermodynamic forcé;, (Eq. (108a))
must be equal teweo. Let os and or respectively be the start and finish stressestter
martensite reorientation (see Fig. 31(b)). Therhaee:

m At the beginning of martensite reorientatiers o5, z7 = 1,2, = O:

A,=Kk-0£,=0,£, (114)
m Attheendg =061,21=0,2=1:

A,=-k-0,6,=0.,¢8, (115)

By solving Eqs. (114) and (115), we obtain:

K :%eo(as o) (116)

g,

tw

--Lio,+0) (117)
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Equation (116) shows that the interaction parametepresents an area bounded by the
strain-stress curve (see the shaded area in Filg))3If the martensite variants are compatible
(0s = o¢), then the areao(os—o%)|/2 is null (i.e.k = 0). If the two variants are incompatiblg (

# o7), then the area is not zero. Therefore, such @&ncan be viewed as the energy needed

to overcome the incompatibility of the variantsidgrmartensite reorientation.

4.2.6.2. Magnetization tests

From the experiments in this sub-section, the atitur magnetizatios can be directly
obtained. Two other parameters (i.e., the magragtisotropic energy coefficiem, and the
magnetic susceptibilitya(0) for the magnetization along the magnetic easy}aare also

obtained in order to calculate the magnetic suguépes a;, a,, az of the variants.

®) ny: constant

()

y
y
X 17r7r7r7r7rr7rrrrz Vi E

x‘ 1777r7r777r7r77777

Fig. 32. (a) Magnetization test along magnetic eagy. (b) Magnetization test along magnetic hard-
axis. A constant compressive stregsof large value is simultaneously applied to preveartensite

reorientation.

m Magnetization along magnetic easy-axis
The material in the state of V1 (with magnetic easis alongx-coordinate) is put in a

magnetic fieldHx alongx-coordinate (Fig. 32(a)). By linearization of thagnetization curve,
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we can determine the saturation magnetizaliian and the magnetic susceptibili0) for

the magnetization along the magnetic easy-axisKgpe3).

m Magnetizatioralong magnetic hard-axis

The material in the state of V2 (with magnetic eagis alongy-coordinate) is put in a
magnetic fieldHx perpendicular to the magnetic easy-axis of V2.pFevent martensite
reorientation during the experiment, a constantmessive stress,y (~10 MPa) is applied
alongy-coordinate (Fig. 32(b)). Following the same praged as the previous experiment,
the magnetization curve for the magnetization pmscalong the magnetic hard-axis is

obtained.

m Calculation ofay, a, ag

The uniaxial magneto-crystalline anisotropy energgnsity u, for Ni-Mn-Ga 5M
martensite can be expressed as (O’Handley et(4Q)2

u (6) =K,sin’ g (118)

where K, is the coefficient of magneto-crystalline anisptraenergy;d is the equilibrium
angle between the magnetic easy-axis of the mateeveriant and its magnetization vector.
Ua(0) can be determined by the area between the magtieti curve along the easy-axis and
that along the direction deviating by an angfeom the easy-axis (see the shaded area in Fig.
33). For the magnetization along the magnetic laaud-@ = n/2), we haveal, = K. SoK,can
be directly obtained by the magnetization curvesfthe previous two magnetization tests.

From Fig. 33u4(0) can be calculated as:

v L1
U, (6) = 1M [a(g) a(o)j (119)
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wherea(0) anda(fd) are respectively the magnetic susceptibilitieshef magnetization along
the magnetic easy-axié € 0°) and that along the direction deviating byaagled from the

easy-axis. With Egs. (118) and (119), we can oliterfollowing expression &f(0):

(120)

. -1

a(6) :( 1, 2K, (smje)j
a(0)  HM:

The magnetic easy-axes for variants 1, 2 and 3esqmectively thes-, y- andz-coordinate.

Let 01, 6, and 03 be the angles between the magnetic fidldnd thex-, y-, z-coordinate,

respectively. By Eq. (120), the magnetic susceltés of the variants are:

. -1
a (H) = a8, :( 1 + 2K, (sz b )j for variant 1 (121a)
a0) oM
1 2K, (sif8,))
a,(H)=a(8,) = +—u (s 5 ) for variant 2 (121b)
a0)  pM:
-2 -1
a;(H)=a(g,) = 1 2K, (Sm2 %) for variant 3 (121c)
a0) M
M (A/m)
Along magnetic easy-axis
M| mmmmme —
3 Along the direction
deviating from magnetic
easy-axis by angle ¢
H (A/m)

Fig. 33. Magnetization curves (after linear appmeadion) of the magnetization along the magnetic
easy-axis (dashed line) and that along the dinead®viating from the easy-axis by an anglésolid
line). The uniaxial magneto-crystalline anisotramergyu,(¢) can be determined by the area between
the two magnetization curves. The saturation mazgtéin Mg and the magnetic susceptibilitiafO)

anda(d) are also illustrated.
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4.3. Numerical simulations and model validations

Application of the constitutive model in simulatititge material’s behaviors (using Matlab)
is reported in this section, while the structuramhidations (using the finite element code

Cast3M: http://www-cast3m.cea)rare reported in the next section (i.e., Sectich.4The

algorithm of the Matlab program is summarized irbl€a2. Table 3 lists the values of the
model parameters used for the simulations. Fivelkiof the material’'s behaviors are
simulated and compared with experiments in theovalg sub-sections: (1) Martensite
reorientation induced by a non-rotating magnetdtdfi(the direction of the magnetic field is
fixed while its magnitude is changing); (2) Mart@asreorientation induced by a rotating
magnetic field (the magnitude of the magnetic fislfixed while its direction is changing); (3)
Super-elasticity under biaxial compressions; (4petelasticity under magneto-mechanical
loadings (compressive stress plus a perpendicukegnetic field); (5) Thermo-magneto-
mechanical behaviors of FSMA. For convenience, eglof compressive stresses are positive

in this section.

Table 2. Algorithm of simulation on material’'s betas.

Initialization of model parameters

Initialization of material state

Input: g, H
Output: £, M
Start:

Equally divide the magneto-mechanical loadiathpntoN intervals (Ag,Aﬂ)

Initialize the counten =1

Whilen<N + 1:
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1. (n) =g(n—1) +AQ, ﬂ(n) :ﬂ(n_l) +Aﬂ

S

2. Calculatea™ (i =1, 2, 3) by Eq. (121).
3. Calculate the thermodynamic fordg&” ((i, j)=(1,2), (2,3), (3,1)) by Egs. (108) and (109).
4. Detection of martensite reorientations:
mIf A" > o6, 2P > 0andz™ < 1, then martensite reorientation between variand;.
m If A< =660, 2" < 1 andz™Y > 0, then martensite reorientation between vatiand;.
5. If there is martensite reorientation betweenavai andj, thencalculate the volume fraction
transformatiomz; by Eq. (113); if notAz; = 0.
6. Update the volume fractions
7" =2,"Y + Az,
23" = 2"V + Azyg
731" = 25,"V + Az
2™ ="V~ Azjp+ Azgy
2" = 2"V~ Az,3+ Azy,

2" = 2"V Azgy + Azpg
7. Update the straig(“) and the magnetizatiol ™ by Egs. (101) and (103).

8. Increase the counter+1.

End.

Table 3. Parameter values from the uniaxial congwastest and the magnetization tests in (Heczko,
2005).

Model parameters

E (MPa) 100,000 Ms (A/m) 500,000
€0 (%) 5.8 a(0) 5

k (I/n) 10,900 K, (J/n?) 170,000
ow (MPa) 1.2
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4.3.1. Martensite reorientation induced by a non-rtating magnetic field

Large reversible strain and high frequency respomsiee FSMA a promising candidate for
actuators. Actually, many simple actuators based8NA have already been proposed in
literature (e.g., Gauthier et al., 2006; Suorsal.e2002; Tellinen et al., etc.). This sub-section
is devoted to simulate the material's behavior asaatuator driven by a non-rotating

magnetic field.

4.3.1.1. Non-rotating magnetic field with a uniaxiastress

The material in the initial state of V2 is undemagnetic fieldHy (alongx-coordinate) and
a constant compressive stregg (alongy-coordinate) (see Fig. 34). Magnetic loadirdy (
increases) can induce the martensite reorientdtam V2 to V1 (with magnetic easy-axis
along the field), while during unloading decreases to 0), reverse martensite reorientation
from V1 to V2 can be induced by the compressivesstr The magneto-mechanical responses

of the material from the experiments (Heczko, 208%) simulations are compared in Fig. 35.

Oﬁ: constant
JAV-’
' =
e
7777777777777 V2 Vi1

X

Fig. 34. FSMA used as an actuator driven by a deting magnetic field (1D case: uniaxial stress).
During magnetic loading-unloading (the magnitudeh# field increases and decreases), martensite

reorientations between V2 and V1 are induced, wiadal to the reversible strain of FSMA actuator.
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Figures 35(a) and 35(b) are, respectively, the m@giield-induced strain and the
magnetization curve obtained for the case of swathpressive stressy (0.6 MPa). The
points (a, b, c, d, e, f, g, h) on the figures cade the sequences of the material’s responses.
Path a&b->c>d—>e—>f corresponds to the first magnetic loading-unlagdcycle, and path
f>g>h->g—>f corresponds to the second cycle. At the beginoinipe first cycle, the strain
gyy remains 0 and the magnetization increases slaavkib(in Figs. 35(a) and 35(b)) until the
switching fieldpoHsw (= 0.3 T in Fig. 35(a)) is reached, where the martengorientation
starts and a rapid increase of both strain and etamion is observed ®c). For the small
values ofoyy (0.6 MPa here), the martensite reorientationnsoal complete (i.e., all variant 2
has transferred to variant 1 during magnetic log)iso the strain change (= 5.8%) due to
martensite reorientation is obtained at the entbading (point d in Fig. 35(a)). During the
magnetic unloading (magnetic field decreases tth@)small stress cannot induce the reverse
martensite reorientation, so the material remairthe state of V1 and no reversible strain is
predicted. But in the experiment, a small reveesitirain £e/co < 20%) is observed. The
simulation is performed on a material point whhe £xperiment gives a structural response,
where the stress and the magnetic field are nattlgtiuniform. For the second magnetic
loading-unloading cycle (magnetic field in the n@ga direction of x-coordinate), no
martensite reorientation is induced and no straange is predicted. The material’'s response
of the first cycle is quite different from that tfe second cycle. Such phenomenon is called
first cycle effect.

For a larger constant compressive stregs(e.g., 1.4 MPa in Figs. 35(c) and 35(d)),
martensite reorientation during loading begins larger switching field|{opHsw~ 0.5 T in Fig.
35(c)), becausey, hinders the martensite reorientation process. gudnloading, reverse
martensite reorientation is induced &y and a rapid decrease of strajjis observed in Fig.

35(c). At the end of unloading, the material retuto its initial variant state, so a large
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reversible strain is obtained. The material’'s b&bravare repeated in the following magnetic
loading-unloading cycles. If the compressive steggss too large (e.g., 3 MPa in Figs. 35(e)
and 35(f)), martensite reorientation is totally dded and no strain is observed. The
compressive stress over which the martensite mgatien is blocked is defined as blocking
stressop,. TO obtain the magnetic-field-induced strain ie ttD case (uniaxial stress with a
magnetic field), the applied compressive stigsscannot exceed,. However,o, is only a
few MPa (Heczko et al., 2000; Murray et al., 200D). obtain a larger output stresg
(larger tharns,), FSMA must work in multi-axial loadings (multi-gk stress with a magnetic

field), which is the topic of the following sub-gemn.

(a) Magnetic-field-induced strain (b) Magnetization curve
at G, = 0.6 MPa at 6, = 0.6 MPa
ﬁ"h."i‘*"“:;imx_x‘g s er_x_ :'(Se“"__"’d" 1
sl \\" k)l )ﬁj K 1
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eczko, S [ #1 | —_s_ Experiment
[ g P . 177 (eczko, 2003)
0 . b ‘ T
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
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(¢) Magnetic-field-induced strain (d) Magnetization curve
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(e) Magnetic-field-induced strain (f) Magnetization curve
ate,, =3 MPa at o, =3 MPa
6T . : ,
1 L
5r g’*
=
= 0.5)
< 47 =
= 2
y
" =
= 3 g Q- e
g ¥
Z g
B
= Simulation 3 050
<
1l | .. Experiment ~ — Simulation
(Heczko, 2005) )
: s Experiment
0 =X ] 1 (Heczko, 2005) 1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Magnetic field g H, (T) Magnetic field p,H, (T)

Fig. 35. Comparison between simulations and exparim(Heczko, 2005) of the material’'s magneto-
mechanical responses at different levels of conspresstress,: (a) and (b) fow,, = 0.6 MPa, (c)
and (d) fore,, = 1.4 MPa, (e) and (f) fos,, = 3 MPa. Figures on the left-hand side repredeat t

magnetic-field-induced strain and those on thetfigind side are the magnetization curves.

4.3.1.2. Non-rotating magnetic field with biaxial Fesses

Magnetic field Hy (along x-coordinate) and constant biaxial compressiegsand ayy
(alongx- andy- coordinate, respectively) are applied to the nten the initial state of V2
(see Fig. 36). The material can switch to V1 dutihg magnetic loading and switch back
during unloading depending on the stress levels. iddicated by Eg. (108a), the
thermodynamic driving forcé\;, for the martensite reorientation between variargntl 2
depends on the stress differeneg,Hox), so the key parameters in the biaxial loading
conditions are not the two stresses themselveghburtdifference 4yy—oyx). Fig. 37 shows the
effects of the stress differencey (o) on the material's magneto-mechanical responses

predicted by the model.
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O, "y constant

Ty
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O" \,x: constant

S — =
—
S 7777777777777 V2 Vi

Fig. 36. FSMA used as an actuator driven by a mtating magnetic field (2D case: biaxial

compressions). During magnetic loading-unloadingrtemsite reorientations between V2 and V1 are

induced.

For the cases of small and large stress differefegsoy,y—oxw = 0 MPa and 3 MPa in Fig.
37(a)), martensite reorientation is blocked eithaing magnetic loadingy—oyxx = 3 MPa) or
unloading §y,—oxx = 0 MPa), so no reversible strain is observedoitain a large reversible

strain, medium levels of the stress differencena®ded (e.gayy—oxx = 1.3 MPa and 1.6 MPa

in Fig. 37(a)). It is noted that the effect of thexial stresses .’ andg;’) on the

material’s behaviors is identical to that of a wiah stresso,) in 1D configuration:oy, ~

2D

(o, -0?2°). So the applied compressive str@ﬁ in 2D configurations can be larger than

the blocking stress;, (stress limit in the uniaxial loading conditiosge sub-section 4.3.1.1),

as long as the stress differencer;f — o3’ ) is less than the blocking stress. Similar

discussions can also be found in (He et al., 22012).

The simulation results (Figs. 35 and 37) of theteraite reorientation induced by the non-
rotating magnetic field demonstrate that the momdelable to describe most of the
characteristic features of the material’'s behavibgsteresis, influence of the compressive
stress on the switching field, blocking of martémsieorientation at high stress levels, first

cycle effect at low stress levels, etc.
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(a) Magnetic-field-induced strain (b) Magnetization curve
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Fig. 37. Model predictions of the material’s magnatechanical responses at different levels of

compressive stress differencg,toy): (a) for magnetic-field-induced strain, (b) foragnetization
curves.

4.3.2. Martensite reorientation induced by a rotatng magnetic field

H: rotating

V2
z x L1777rrrrrrrrrtz vi

Fig. 38. FSMA used as an actuator driven by a irgjaiagnetic field.a is the rotation angle.

Periodical martensite reorientations between V1\@dead to reversible strain during the rotatién o
the magnetic field.

FSMA-based actuators can also be driven by a ngtatiagnetic field (see Fig. 38). The
material’s behavior in a rotating magnetic fieldsimulated and compared with experiments
(Mullner et al., 2002) in Fig. 39. The rotationrssawith the field along-coordinate (rotation

anglea = 0°) and the material’s initial state V1. Duritige first half-cycle 4: 0°>180°), the
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material changes from V1 to V2 at a switching angle~ 54° in Fig. 39) with a rapid
decrease in strainy. The strain is recovered when V2 switches back/ioat another
switching anglex, (= 144° in Fig. 39). Such process is repeated iméurtotations. The strain
change during the martensite reorientations is Ilemah experiment than in simulation,
because simulation is done wih= 5.8% whilesy of the material used in experiment is 1.9%
(Mullner et al., 2002). In the first half-cycle,ethmaterial is in the state of V2 for the angle
range of {1, az]. Considering a rotating field of constant ratee time fraction of variant 2 is:

(02 — @1)/180° = 50%, which means that both variants occtqgysame time fraction in a

rotation cycle.

=]

2+ X % x x X% X % x x %

4

Strain g,, (%)

= Simulation
Experiment
(Miillner et al., 2002)
| IS
-0r

0 90 180 270 360

Rotation angle a (degree)

Fig. 39. Evolution of strain,, with the rotation of the magnetic field (with ctaist magnitudeiH =
2 T): results from the simulation (solid line) aexperiment (crosses) are comparedanda, are the

switching angles where the martensite reorientatiake place during the first half-cycle of rotatio

The time fractions of the variants can be changedgplying certain compressions (e.g.,
oxx andoyy respectively along- andy-coordinate, see Fig. 40(a)). The simulation resunt
Fig. 40(b) indicate that both the time fractionglué variants and the field-induced reversible
strain of the material depend on the stress diff@egyx — gyy). Whenaoyy andaoyy are equal,
the time fractions of the two variants in a rotatwycle are equabf—ayy = 0 in Fig. 40(b)).
Whenoyy is larger, V1 occupies a larger time fraction (erg—oyy = 1 MPa); wherwyy is too
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large, martensite reorientation is blocked andrtiagerial is always in the state of V1 (e.qg.,
ox—oyy = 3 MPa). An analytic relation between the st@ifference and the time fractions of
the variants can be found in (He et al., 2011). therpart of the reversible strain, when the
stress differencerl—ayy| is small (e.9.oxx—ayy = 0 or 1 MPa in Fig. 40(b)), the martensite
reorientations between V1 and V2 are complete ab tthe maximum reversible strain of
5.8% (=¢&o) is obtained. Whergjx—ayy| is medium (e.g.gxx—oyy = 1.7 MPa in Fig. 40(b)),
martensite reorientations are incomplete due tddrang effects (interaction parameker 0).
So a smaller reversible strain £s) is obtained. Whem|x—ay,| is large (e.9.gx—ayy = 3 MPa

in Fig. 40(b)), martensite reorientation is bloclkedl no strain change is observed.

(b)

. 0F T T H " I
@) o,,: constant | ¢ : ! I
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Rotation angle a (degree)

Fig. 40. (a) FSMA in a rotating magnetic fiditland constant biaxial compressiang anday,. (b)

Model predictions of rotating-field-induced straip at various levels of stress differenegfoyy).

4.3.3. Super-elasticity under biaxial compressions

Before discussing the simulation results for bibg@npressions, we first report our recent
2D compression tests (for comparison with simureg)csince all of the existing experiments
on FSMA are done in 1D configurations (i.e., a negnfield with a uniaxial stress of a few
MPa). Our 2D compression tests in this sub-sectiom to explore the possibility of using

FSMA in multi-axial stresses of high levels. Fid.(d) shows the schematic diagram of the
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experimental setup: the material in the initiatestaf martensite variant 1 is under a constant
compressive stress,, along x-coordinate and a varying compressive str@gsalong y-
coordinate. Variant 1 switches to variant 2 dutting loading oty, and switches back during
unloading. Compressive strains are positive in gub-section and in the following sub-

section 4.3.4.

(a) Experimental (b) Friction occurs when sample contracts
setup or elongates
Varying compressive Clampers M
stress o,, uRu
Sampl o
Constant compressive wmple LH
Clam ers stress o, LI\ Contact surfaces (between clampers
x.\' p and sample’s y-z surfaces) where
friction occurs
Load cell I_._._ N ——
Motor s 1 -
amp ¢ Sample

(x-y surface) y-z surface (area s,) pim contracts

- Sample clongates

x-z surface (area s,)

Fig. 41. (a) Schematic diagram of the experimesgtlip for symmetric biaxial compression tests. (b)
Friction occurs on the contact surfaces betweerctimmpers and the samplg/sz surfaces. Dotted
lines are marked on the sample for reference slpthia relative motion between the sample and the

clampers.

During the experiments, the sample contracts angaltes, leading to the external friction
between the clampers and the sample’s surfaced~(ged1(b)). The effects of the external

friction are removed from the nominal streg$ to get the effective stresgy (details about

the external friction can be found in Chapter 3ib-section 3.1.3):
0,=0),~Ho,s 13 during loading (122a)

o,=00 +us,s g during unloading (122b)

129



wherey is the friction coefficient (measured to be 0.09%)is the cross section areak
surface {x 2.5 mni, see the insert of Fig. 41(a});is the contact area gfz surface between

the sample and the clampefsc(0 mnf with the clamper length of 10 mm, see Fig. 41(a)).
Figure 42 shows four stress-strain curv@s—y,) at different levels oby (0 ~ 9 MPa).
For the case of uniaxial compression tesk € 0 in Fig. 42(a)), after a very small elastic
loading, martensite reorientation from variant véwiant 2 begins. During the reorientation,
with compressive straigyy increasing, the compressive stregsremains nearly constant (so-
called stress plateau). After the reorientatior, ¢astic deformation of variant 2 leads to
significant stress increase. During unloading (casgive stress,, decreases to 0), only the
small elastic deformation is recovered. Residuairstas large as 5.7% appears because the
material is in the state of variant 2 rather thanant 1 (initial state) at the end of unloading.

For biaxial compressions, # 0 in Figs. 42(b), 42(c) and 42(d)), the residuidia decreases
significantly with increasingyy, because reverse martensite reorientation fronanma@ to
variant 1 is induced during unloading. At high lisvef oy (€.9., 6.5 MPa in Fig. 42(c), 9 MPa
in Fig. 42(d)), super-elasticity is obtained (zeesidual strain). The biaxial compression tests
show that the intrinsic dissipation and the tramsfition strain related to the martensite
reorientation are constant in all the tested 2[@sstrstates, which imply the possibility of
using FSMA in high levels of multi-axial stressesil keeping their advantages — low

intrinsic dissipation and large reversible stradimén et al., 2013).

(a) 6,, =0 MPa (b) 6,.,=1MPa
= 25 = 25
E = Simulation H E = Simulation
~ 20 == Experiment i ~ 20 == Experiment
& IS
2 15 s 1 2o 157
I [ I
= H =
o 10 :I— o 10}
2 H 2
a B 4
2 5 & B 2 57 "
o H o - PaTugagas noe s Y
E LA R ] A - E 4
(3 o ereeer Cx) : — n 5 0 . .
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Compressive strain &,, (%) Compressive strain &,, (%)
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Compressive stress gy, (MPa)

(c) 6. = 6.5 MPa

e Simulation
== Experiment

Compressive strain &y (%)
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e Simulation
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Fig. 42. Compressive stress-strain curvgs-§,y) at different levels oy, (a) oxx = 0 MPa, (b =1
MPa, (C)ox = 6.5 MPa, (dpx = 9 MPa. Simulations (solid lines) and experimddtstted lines, after

removing the effects of the external friction by. EtR2)) are compared.

Model simulations are also shown in Fig. 42 to carepwith the experiments. It is seen
that the model can capture the important effectthefauxiliary stressyy, on the material’s
mechanical behaviorssf—¢,, curves): super-elasticity at highx and dependence of the
plateau stresses @R, In the experiments, hardening increases withibeease oby. The
increasing hardening is due to the fact that ubgedial stresses, the martensite reorientations
are realized by the motion of many fine twin boumaelg in contrast to the motion of single or
a few twin boundaries under uniaxial stress (Chem.e2013). Although the model assumes
constant hardening (constant interaction paramietefior all stress states, the simulated
plateau stresses are close to the average plateases observed in the experiments (see Figs.

42(c) and 42(d)).

4.3.4. Field-assisted super-elasticity

Besides actuators, FSMA can also be used as arsemgaltage generator or magnetically
controlled damper (e.g., Stephan et al., 2011; Suet al., 2004). Fig. 43 shows a schematic
diagram of the loading conditions for FSMA sensemnfgrator/damper: the material in the
initial state of V1 is under a compressive stiggslongy-coordinate and a constant magnetic
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field Hy along x-coordinate. During the mechanical loading-unlogdof ayy, martensite
reorientations between V1 and V2 are induced. Coisqas between simulation predictions

and experimental observations (Heczko, 2005) avevshin Fig. 44.

1%

H_: constant

—

y =>:
L D
JT7777777777777 Vi ¥2

X

Fig. 43. FSMA used as a sensor/generator/damperindp the mechanical loading-unloading,

martensite reorientations between V1 and V2 araded.

Figure 44(a) is the stress-strain cureg{s,) of martensite reorientation under uniaxial
compressiomy (HoHx = 0), which is the same as Fig. 42(a). For thermatigation evolutions
(Fig. 44(b)), no net magnetization is observed autithe magnetic fieltHy. In the moderate
magnetic fields (e.glloHx = 0.4 T), rapid magnetization changes are obsedigthg the
martensite reorientations (Fig. 44(d)), and sucksstinduced magnetization change can be
used for sensors or voltage generators. In thegtroagnetic fields (e.gdoHx = 1.1 T),
magnetization remains at the saturation level (Biff)), because both variants arrive at
saturation magnetization along the field. It isoad®en that super-elasticity is obtained in the
medium and strong fields (Figs. 44(c) and 44(elje Tntrinsic dissipation in the hysteresis

loop of the stress-strain curves can be used foipdas.
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(a) Stress—strain curve (b) Magnetization evolution
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Fig. 44. Comparison between simulations and experism(Heczko, 2005) of the material’s magneto-

mechanical responses at different levels of magtietd L,yH,: (a) and (b) fopHx = 0 T, (c) and (d)
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for yoHy = 0.4 T, (e) and (f) fopeHx = 1.1 T. Figures on the left-hand side are str&tsain curves

(oyy—¢yy) and those on the right-hand side represent tlgneteation evolution with the applied stress

Oyy-

Comparing Figs. 44(a), 44(c) and 44(e), it is skt the stress plateaus for forward and
reverse martensite reorientations increase withreasingHx. The effect ofHx on the
material’'s mechanical behaviors,f-¢,y curves) is similar to that af in the case of biaxial
compressions (see sub-section 4.3.3). In fact,amecalculate the equivalent stresgigf(so-
called magneto-stressnafHy)) by the increase of the plateau stress in thenetag field
(shown in Fig. 45(a)). The model well predicts thependence afmagon Hy: omaginCreases
with increasingHyx and saturates at a certain level where both varieeach the saturation

magnetization (Fig. 45(b)).

Magneto-stress o,,,, (MPa)

X

Simulation
Experiment
(Miillner et al., 2003)

S

0.5

1

1.5

& Magnetic field gyH, (T)

Fig. 45. (a) lllustration of the magneto-stress.{H,). (b) Magneto-stress,, obtained from
simulations and experiments (Mullner et al., 2003).

The model quantitatively predicts the characterittatures of the material’s behaviors in
the experiments: hysteresis, magneto-stress ewnfjtimagnetization change in moderate

magnetic fields, super-elasticity in strong magnéélds, etc.
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4.3.5. Thermo-magneto-mechanical behaviors of ferroagnetic shape memory

alloys

Several parameters (i.eq, ow, MS, K,) governing the material's behaviors are tempeeatur
dependent (Glavatska et al., 2002; Heczko and &tra®03; Heczko and Ullakko, 2001;
Jiang et al., 2005; Okamoto et al., 2006; Straka ldeczko, 2003b; Straka et al., 2006,
2011a). Although the temperature-dependence oéthasameters are generally non-linear in
a wide temperature range, the material’s workimgpterature range is not large, i.e., around
10 K ~ 120 K below the martensitic transformati@mperature, where the field-induced
martensite reorientation exists (O’Handley et 2006). In this regard, we can make linear

approximations for a rough estimation of the matgwarameters in the working temperature

range:
&(M)=qT+g (123a)
0.(T)=GT+g (123b)
MM =c¢T+¢g (123c)
K,(T)=cT+g (123d)

where the coefficients; (i = 1, 2,..., 8) can be determined from experimenisfiing the

experimental results @b, ow, Ms andK, at different temperatures (see Fig. 46), we cdaiob

£,(T) =-0.012 + 9.3 (124a)
a,,(T)=-0.0093 + 3.6 (124b)
M_(T) = -960T + 84000( (124c)
K, (T) = -760T + 39000( (1244d)
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Fig. 46. Linear approximations of the temperatugpaehdence of the material parametes@), oul(T),
My(T) andKy(T) ) in the working temperature range.

Equation (124) (for calculatingy, ow, Ms, Ky) and Table 3 (for other model parameters)
are used in the simulations of temperature-depérugraviors of FSMA. Model predictions
of field-induced martensite reorientation under tbastant compressive stregs of 1 MPa
(see Fig. 34 for the experimental set-up) at diifiertemperatures are compared with the
experimental results in Fig. 47. It is seen fromgskid7(a), 47(c) and 47(e) that the forward
martensite reorientations during magnetic loadirga@mplete, while the reverse martensite
reorientations during unloading depend on the teatpees. At low temperatures where the
applied compressive stresg (= 1 MPa) is smaller thas, reverse martensite reorientation
cannot be induced by, during magnetic unloading, so no reversible stisipredicted (e.g.,

T =223 Kin Fig. 47(a)). A small reversible straibserved in the experiment is possibly due
to the structural response (some stress concamtraticorners or clamping end, etc.). When
the temperature increasesy, decreases (see Fig. 46(b)), leading to partiadrssvmartensite

reorientation (e.g.gww = 1 MPa atT = 288 K in Fig. 47(c)). Complete reverse martensit
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reorientation is obtained at higher temperaturesresy,, < 1 MPa (e.g.T = 307 K in Fig.

47(e)).

(a) Magnetic-field-induced strain (b) Magnetization curve
at T=223 K at T=223K
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(e) Magnetic-field-induced strain (f) Magnetization curve
at T=307K at 7T=307 K
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Fig. 47. Material’'s magneto-mechanical behaviordifi¢rent temperatures. (a) and (b) foill = 223
K, (c) and (d) forT = 288 K, (e) and (f) fol = 307 K. Figures on the left-hand side represkat t

magnetic-field-induced strain and those on thetfigind side are the magnetization curves.

In the previous case,y is small, so the magnetic field can congqagrandey, to induce
the complete forward martensite reorientation & wWorking temperature range. In another
case wheresyy is relatively large (e.g.gyy = 1.9 MPa >ow(T) in Fig. 48), the reverse
martensite reorientation (induced by, during magnetic unloading) is complete, while the
forward martensite reorientation (induced by thegnatic field during magnetic loading)
depends on the temperatures. At low temperaturagensite reorientation is totally blocked
because, is too large for the magnetic field to induce raasite reorientation (e.gl,= 220
K in Fig. 48). With the temperature increasg, decreases and the forward martensite
reorientation is induced, so more and more stsawbserved (see the magnetic-field-induced

strain afT = 250 K, 280 K and 310 K in Fig. 48).
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Fig. 48. Model predictions of magnetic-field-inddcstrain under the constant compressive stress of
1.9 MPa at different temperatures.

In quasi-static loadings (the frequency of the nedigrfield is low), temperature variation
is negligible. However, in dynamic loadings (thequency of the magnetic field is larger than
100 Hz), temperature variation in the material d@n important due to the mechanical
intrinsic dissipation and the heat from eddy curréfenry (2002) analytically calculated a
temperature increase of 13 K in 5 s in the magriid of 500 Hz; Lai (2009) observed, in
the magnetic field of 400 Hz, a temperature inaezfs7 K in 35 s and this increase was not
saturated. The temperature increase of the materidynamic loadings will influence its
behaviors. Take an example of a dynamic test inntlagnetic field of 500 Hz with the
predicted temperature increase of 13 K in 5 s bgnfy, 2002): At the beginning, the
material’s behavior is similar to that in Fig. 4} (&fter 10 seconds, the temperature can rise
to 307 K and the material's behavior can chandedo47(e). After another 10 seconds, there
can be no strain change due to the martensiteergation, because the temperature is higher
than the austenite finish temperature. A roughhestion of the evolutions of the material’s

response is shown in Fig. 49. Therefore, tempegagifiects should be taken into account in
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high frequency dynamic analysis. In this case ctiestitutive model with temperature effects

can be extended for the dynamic problems of thamagneto-mechanical coupling.

(c) After 20 seconds

(b) After 10 seconds

(a) Beginning

Strain ¢,
Strain g,
Strain ¢,

Magnetic field u,H,

—
Magnetic field u H, Magnetic field u H,

Rough estimations of the magnetic-fieldeiced strain under high-frequency dynamic

Fig. 49.
loading. (a) Beginning. (b) After 10 seconds thearial’'s temperature rises. (c) After 20 seconds th

temperature is so high that the material is inaih&tenitic phase.

140



4.4. Structural analysis of ferromagnetic shape meary beams

In literature, besides the linear FSMA actuatorsl aensors, some FSMA bending
actuators and dampers have also been proposedKeld.et al., 2004, 2007; Zeng et al.,
2010). To predict the nonlinear bending behavidr=8MA beams, our 3D constitutive
model is incorporated into finite element analysishis section. The simulated beam is fixed
at one end (no displacement or rotation) and acafiorce £y = 0.1 N) is applied at another
end (see Fig. 50). Structural calculations are dmieg the finite element code Cast3M with

the model parameters in Table 3 and simulationrékgo in Table 4.

Top surface

=]
Vi

V2

/)

S

~ Bottom surface

L =20 mm

Fig. 50. Clamped FSMA beam for numerical analy$isemding behaviors.

Table 4. Algorithm of structural calculations.

Initialization of model parameters

Initialization of structure state

Input: applied forcd-

Output: displacement field

Start:
Equally divide the mechanical loading path iNtsteps OAF )
Initialize the stepn = 1.

Whilen<N + 1:
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1. E™ =™ 4+ AF .
2. Initialization of the iteration:

m Set iteration numbel = 1.

m =M 0= (()=12), @3). @1 2"V =2" (=123

11ty
Ity

3. With applied forceE ™ andz, Y, 2D, 2, D compute the displacement fiel":
m Solve the governing equation with boundary cooditconsidered in the finite element

formulation forthe nodal displacementl), and the nodal traction®} on the surface

of imposed displacement:

K] -fel] o | (7 lozte, 50, )
{I[G] 0 H{T}}_{ {u}

where K] is the stiffness matrix; [G] is the localizatianatrix related to the boundary
condition of imposed displacement (Bonnet and Fira2@06); {F"} is the applied nodal

force; {ZZ} is the supplementary effort related tbe volume-fraction transformations
between the variantsp(} is the imposed nodal displacement. The detailebgntations of

the finite element formulations are given in Appirisl.

m Calculate the displacement fial?® by displacement discretization:

=[N

where N] is a matrix composed of the shape functions eelab all the nodes in the

structure (see Appendix B.3).
4. Compute the strain field with small strain apgmeation: £ :%(Dg("’(') +'Ou™y .

(m() (m(-1) 4 (mM (ﬂ)(l-l))

5. Compute the stress field by elastic loading éase:g™™" =g

o

(e -¢g
Whereg is the elastic stiffness tensor of the FSMA maiitens

6. Compute the thermodynamic fordg&’" ((i, j)=(1,2), (2,3), (3,1)) by Egs. (108).

7. Detection of martensite reorientations:
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m If AV > 80, 200 > 0 andz™™ < 1, then martensite reorientation between vaiian
andj.
m If AV < —g60, 200 < 1 and 2P > 0, then martensite reorientation between varian

i and;.

8. m If there is martensite reorientation between vdiiandj, then calculate the volume fraction

transformatiomz;:

(l;i —gj ) :g:(g(n)(l) _£(n)(|-1))

Az, = whereU  and l;j are transformation strain tensors

A+ E-U)CU-Y)

respectively for variaritandj (see Eq. (81) for the mathematical expressions).

m If there is no martensite reorientation betweemnavdi andj, thenAz; = 0.

9. Update the volume fractions

2,00 = 7 0D L A7
2,00 = 7 (00D 4 Ay
25,00 = 7 0D L A7
200 = 200D _ Az 4 Az
2,00 = 20D _ A7+ Az,

200 = 2OD_ Az 4 Az

10. Check the governing equation with the updaéd”, 2", z5,"O:

[l (ol ={ F}+{zz £ 2% 29)
m If the governing equation stands within the dedinelerance, then the iteration stops:
Update the results of the structural calculatianstlie current loading steapand then go to

11.

(n) (m@) (n) (m( .

u= " g =00 20 =200 ((,)=@1,2), 23), 31 2" =z"" (=127

1))

m If the equation does not stand, continue thetitaral =1+1, go back to 3.

11. Increase the counter for the structural catauhs of the next loading stept1.
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4.4.1. Simulation results

The material is assumed to be in the initial stdte€2 with short axis along y-coordinate.
The application of the fordé, (see Fig. 50) introduces a compression (akengordinate) on
the top surface of the FSMA beam and a tractioon@k-coordinate) on its bottom surface.
As a result, variant switching from V2 to V1 (wigihort axis along-coordinate) is induced
by the compression on the top surface, while naamtrswitching happens on the bottom
surface. Fig. 51 shows the simulated force-defdactiurve with typical deformed shapes of
the FSMA beam and the variants’ distributions #fedent levels ofF, (0 ~ 0.1 N). It is seen

that after an initial elastic loading(>®@: Fy = 0 ~ 0.02 N), martensite reorientation from V2
to V1 takes place (see the variants’ distributionigs. 51(c) and 51(d) & = 0.04 N (®),
0.06 N (®), 0.08 N (®) and 0.1 N ®)). During the reorientation, deflection increases
significantly while the forcé, increases slowly (so-called force plateau, sesdison®—->

® in Fig. 51(a)). The deformed FSMA beam (Fig. 51@n)d the corresponding variants’

distributions (Figs. 51(c) and 51(d)) demonstraiz the large deflection in the FSMA beam

is due to the FSMA martensite reorientation.

(@)

0.1

0.08

5

=3

=
T

Force F, (N)

0 1 2 3 4 5 6 7
Deflection D,,, (mm)
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(b) —®

0 1 0 1

Fig. 51. (a) Force—deflection curve of FSMA bed,qis the deflection at the free end of the beam.
(b), (c) and (d) respectively show the evolutiohthe deformed FSMA beam and the volume-fraction
distributions for V2 %) and V1 &).

4.4.2. Specimen-geometry effect on bending deflemti

To study the specimen-geometry effect on the diefle®..q (deflection at the free end of
the beam), simulations are done for the beams diitbrent cross sections. The thickness of
the cross section is denoted bfalong the same direction as the applied fdtgeand the

width is denoted by (see Fig. 50). Bothandw are varied while the second moment of area
I, (:1—12t3w) is kept constant so that all the simulated behave the same elastic response
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(i.e., if the beams are elastic without martensaerientation, they will give the same
deflection). Thus, the simulated deflection diffeze is only related to the geometry effect on
FSMA martensite reorientation. The constiamé given by the cross sectibr 1 mm andv =

2.5 mm (dimensions of the FSMA samples provided Agaptamat Ltd. is usually
1x 2.5x 20 mm). Sincel, (=1—12t3w) is constant in the simulations, only onetandw is

independent. Heré,is chosen as the independent variable to plogé&wenetric effect 0OlDeng

(atFy=0.1 N) in Fig. 52.

FSMA
6- <&\ Elastic .

Deflection D,,,, (mm)

%“ﬁﬂ* T e T T
F»"U’I t (mm)

w

Fig. 52. Geometric effect on deflectidh,¢ The responses of the elastic beams (represented b

triangles) without martensite reorientations (ffiked z, = 1,z=2,=0) are shown for reference here.

Contrary to the common sense that a thicker beaith @vlarger thicknesy will give a
smaller deflection, the deflectidDe,g Of the FSMA beam shows a non-monotonic variation
with the thicknesd: whent increasesDenq first increases to a maximum value, and then
decreases (see Fig. 52). From Euler-Bernoulli beheory, the absolute value of the

compressioro,, induced by the applied forég on the top surface of an elastic beam is:

Fy
2l

i
(L-% (325

z

0, (X)=
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whereL is the length of the beamjs the position along the beam (see Fig. 53).

Fig. 53. Bending of an elastic beam.

From Egs. (108a) and (112aj)(X) must reach the twinning stress, (hardening is
ignored:k = 0) in order to trigger the martensite reoriemtatirom V2 to V1. Eq. (125) shows

that o, (X) is proportional to the thickness So ift is small, theno,, (x) will not be large

enough (larger that,) to trigger martensite reorientation. For the exte case whetes too

small, even the maximura, (x=0) is not large enough, then the FSMA beam wilegan

elastic response (see the force—deflection curvé $#00.4 mm in Fig. 54). With the increase
of t, ox(X) increases and martensite reorientation takes ptacnore and more parts of the
beam, which leads to the significant increase ofledéon in Fig. 52. A typical
force—deflection curve for = 1 mm is shown in Fig. 54, where the martengtwientation

can be identified by a force plateau. When the emsite reorientation is completed, the

maximum strains, > (= &) is reached on the top surface, so the displacemén &,, [X) on

the top surface also reaches its maximum valfie. For the fixed displacememf™on the

top surface, the increase of the thicknessll reduce the slope of the beam (see a schematic
diagram in Fig. 55), which leads to the decreasdefiection with further increasintgin Fig.
52. Typical force—deflection curves for 2.2 mm and 4 mm are shown in Fig. 54: the end of

martensite reorientation is indicated by a sigatificforce increase after the force plateau.
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Fig. 54. Force—deflection curves at different ealwf the beam thicknessThe presented deflection

(Deng is the deflection at the free end of the beam.

Fig. 55. lllustration showing that for a fixed diapementu)**on the top surface of the beam, the

X
increase in the beam thickness frgrto t, reduces the slope of the beam frénto 6,. Compared with
the straing, (5.8%) due to martensite reorientation on thesace of the FSMA beam, the elastic
strain (around 0.001%) on the bottom surface iy gemall. So the neutral axis of the FSMA beam is
near the bottom surface. Here for the conveniefdéstration, the neutral axis is assumed todre
the bottom surface.

4.4.3. Material anisotropic effect on bending defletion

This sub-section studies the material anisotroffiects (i.e., initial states of martensite
variants in the material) on the bending behavidrthe FSMA beams. Simulations are done
for the FSMA beams in the initial state of V1 or.\Fr each initial state (V1 or V3), a series

of cross sections are used (varied thickrteaisd widthw with constant second moment of
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areal, (:1—2t3w), similar to the simulations done in sub-sectiof.2 for the initial state of

V2). The deflectiorDengat different thickness dffor the initial states of V1, V2 and V3 are

compared in Fig. 56.
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5
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w

Fig. 56. Geometric effect on deflecti@h,q for the FSMA beams in the initial states of masten
variant 1(V1), variant 2 (V2) and variant 3 (V3).

It is seen from Fig. 56 that the behaviors of ti&VIA beams in the initial state of V3 are
different from those in the initial states of V1davi2: When the thicknegss small (< 1 mm),
the bending deflections of the FSMA beams in thiainstate of V3 are much smaller than
those in V1 and V2. For the FSMA beam in the ihgiate of V3, the V3> V1 switching is
induced on the top surface of the beam by the cesspinsy,, while on the bottom surface
the material responses elastically to the tenslongax-coordinate, i.e., it is expanded xn
direction and compressed ynandz directions (see Fig. 57(a)). The shrinkage oftib#om
surface along-coordinate introduces a compressigpnon the top surface (see a schematic
diagram in Fig. 57(b))s; energetically prefers V3 and hinders-%3/1 switching. Therefore,

compared with the FSMA beams in the initial staie¥1 and V2, the FSMA beam in the
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initial state of V3 has less martensite reorientatleading to smaller deflection. Experiments
on damping behaviors of FSMA beams (with thicknessl.1 mm) show the same material
anisotropic effects: the FSMA beams in the inibBV1 and V2 have much larger loss factors
than the FSMA beam in the initial state of V3, hesathe latter one has less martensite
reorientation (Zeng et al., 2016) is proportional to the beam thicknégsee Eq. (125)), so
whent is large enough (> 1.5 mm in Fig. 56), martenst@rientation induced by, can be
completed in all the FSMA beams (with the inititdte of any variant). Therefore, the same

level of deflection is obtained at large

@) (b) Top surface

/]

O-ZZ
f [ I//]:l> [
Oy <
¥ v | & |
- Deformed
X o ¥ bottom surface

Fig. 57. (a) The bottom surface is expanded direction and compressed yrandz directions. The

white and grey areas respectively represent thialiaind the deformed shapes of the bottom surface.
The deformation is exaggerated in the schematigra. (b) The shrinkage of the bottom surface

alongz-coordinate introduces a compressigion the top surface.

4.5. Conclusions

A 3D constitutive model of martensite reorientation Ferromagnetic Shape Memory
Alloys (FSMA) is developed within the framework dfiermodynamics of irreversible
processes with internal variables. Compared with éRisting models, the model has the
following advantages:

(1) The model is able to quantitatively describk the existing magneto-mechanical
behaviors of FSMA: e.g., rotating/non-rotating meijmnfield-induced martensite

reorientation and field-assisted super-elastichjoreover, experimental results of biaxial
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loadings are reported, which agree well with thedetsimulations. The model, considering
all the martensite variants and validated by 2Deeixpents, is ready for use in the general 3D
magneto-mechanical loading conditions.

(2) Only a few internal state variables are invdlwe the model and the model parameters
can be easily identified by simple experiments,chHacilitate the practical use of the model.

(3) The temperature effect on the material’s ctoustie behaviors is considered in the
model by taking several material properties asalininctions of temperature. In high-
frequency dynamic loadings where the temperaturatian of the material can be important,
the model can be extended for the study of therragrato-mechanical couplings.

(4) The model is incorporated into finite elemenalgsis to predict the nonlinear bending
behaviors of FSMA beams. Both the sample-geomdfecteand the material anisotropic
effect are systematically studied and found torbpartant when designing the FSMA-based

bending actuators.

The behavior of a matrial point can be differeranir that of a structure due to the
demagnetization effect (depending on the geomdthe sample) and the presence of the
magnetic body force, body couple and surface fohseAppendix B, the finite element

formulations for structural analysis are developed.
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W(@’& S General conclusion and future work

In this dissertation, we theoretically and expenta#ly study the martensite reorientation
in Ni-Mn-Ga (5M martensite) Ferromagnetic Shape MgmAlloys (FSMA). A 2D/3D
magneto-mechanical energy analysis is presentedraodporated into phase diagrams in
order to study the path-dependent martensite mrgatien of FSMA in general 3D loadings.
The criteria and the material requirements for iolotg reversible strain in cyclic loadings are
derived, which provide design guidelines for FSM&sbd actuators. Furthermore, the energy
analysis reveals the advantages of using FSMA iliqaxial configurations: e.g., high output
stress, tunable switching field/angle where martengorientation takes place. To validate
the predictions of energy analysis, martensiteieatation of FSMA in multi-axial loadings is
experimentally studied. It is found that the insi;dissipation and the transformation strain
due to martensite reorientation are constant intedted 2D stress states. Moreover,
preliminary results of 2D magneto-mechanical tebitsw that the output stress of FSMA can
be increased by the increase of the auxiliary str&l these findings imply the possibility of
using FSMA in multi-axial loading conditions. Indar to predict the magneto-mechanical
behaviors of FSMA in 3D loadings, a constitutivedabis developed within the framework
of thermodynamics of irreversible processes. Adl three tetragonal martensite variants are
considered in the model and the temperature eftactaartensite reorientation are also taken
into account. The model is further incorporatea ifimite element analysis to study the non-
linear bending behaviors of FSMA beams. The samgptametry effect and the material
anisotropic effect are found to be important fosigeing the FSMA-based bending actuators.

The proposed 3D constitutive model, validated by éxisting 1D and 2D experiments, is

152



ready for practical use in analyzing the materiakhaviors in general multi-axial magneto-

mechanical loadings.

The work will be continued with multi-axial expergmtal studies on FSMA containing
Type Il twin. Furthermore, experiments have showat the deformation of FSMA during
martensite reorientation is inhomogeneous (se®tlieimages of strain localization in Fig.
23). However, the constitutive model developedhis tissertation is just for describing the
macroscopic behaviors of FSMA. New model will beveleped to study the material

instability and to simulate the strain pattern etiohs during martensite reorientation.
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Appendix A. Supplementary document for multi-axial

experiments on ferromagnetic shape memory alloys

A.1. Biaxial compression tests 154

A.2. Biaxial magneto-mechanical tests 156

A.l. Biaxial compression tests

The photos of the experimental setup are showrignA1. Fig. A.2 shows the nominal
stress—strain curves(—ey,) at different levels ofy, (0 ~ 9 MPa).

Displacement-controlled
compression g,

Image recording for measuring
local strain by DIC technique
(Digital Image Correlation)

| Optical camera l Stress control, measurement
and synchronization

Fig. A.1. Photos of the experimental setup for syt biaxial compression tests.

154



(@)

N
9]

Constant o,

)
<

p—
o

—
<

Nominal compressive stress ny (MPa)

= ) MPa
----- 8 MPa
——— 7MPa
---- 6 MPa
= 5 MPa
----- 4 MPa

3 MPa

2 MPa
= 1MPa
H E (0MPa

"

-

¥
e

e e e R e
et aws s e naw TR TR
0 1 2 3 4
Nominal compressive strain Syy (%)
(b)
25 »
I Constant 6,
I —— 8.5MPa
201 --- 75MPa
L —— 6.5MPa

15

10

Nominal compressive stress O-yy (MPa)

P

- o g

s "
o o
——
-

e e

»
st

Nominal compressive strain

&y (%)

Fig. A.2. Nominal stress—strain curveg,fs,,) at different levels o, (0 ~ 9 MPa).
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A.2. Biaxial magneto-mechanical tests

The photos of the experimental setup are showngnA:3.
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Fig. A.3. Photos of 2D magneto-mechanical setup.
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Appendix B. Finite element formulation for magnetomechanical

analysis of Ferromagnetic Shape Memory Alloys (FSMA

B.1. Governing equations and boundary conditiongi&meral magneto-mechanical analysis 157

B.1.1. Magnetic part 157
B.1.2. Mechanical part 159
B.1.3. Summary of fully coupled dynamic magneto-haadcal analysis 161

B.2. Weak form formulations 162
B.2.1. Magnetic part 164
B.2.2. Mechanical part 164

B.3. Finite element formulations 165
B.3.1. Magnetic part 165
B.3.2. Mechanical part 168

B.4. Summary 171

B.1. Governing equations and boundary conditions fogeneral magneto-

mechanical analysis

B.1.1. Magnetic part
The total Maxwell’'s equations are composed of fawrs: Gauss’ law, Gauss-Faraday law,

Ampeére’s law and Faraday’s law. In the stationaayrfe, their global forms are:

@Q@ ds=jpe o) (B.1a)
0Q Q
ngD_n ds=0 (B.1b)
0Q
Hl=[+22)m ds (810
L S t

0B
gSgEm:—j—mg ds (B.1d)
L S t
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Where @ is the domain occupied by the material body withurdary surfacedQ and
outward unit normah; Sis the boundary surface with closed cukvand unit normah; B

is the magnetic flux density andl is the magnetic field strengtiD) is the electric
displacement fieldE is the electric field strength, is the free electric charge density ahd

is the free electric current density. After apptythe divergence theorem or Stokes’ theorem,

we arrive at the local forms of the equations:

0D =p, (B.2a)
OmB=0 (B.2b)
OxH =3+92 (B.2¢)

ot
nxg=-98 (B.2d)
ot

The Maxwell’'s equations are supplemented by tHewiehg constitutive relations:
D=¢E+P (B.3a)
B=1(H+M) (B.3b)
J=TE+J, (B.3c)

where &, is the vacuum permittivity andy, is the vacuum permeabilityM is the
magnetization density; is the electrical conductivity of the materid?; is the polarization
density andJ is the externally generated current density.

For the analysis of non-polarizable materiaB £0) like FSMA, Eqg. (B.2a) can be

neglected from the Maxwell’'s equations, and thetale constitutive relation (Eg. (B.3a)) can

be reduced to:

D=¢E (B.4)
Moreover, as no external current is applidd € 0), Eq. (B.3c) can be rewritten as:

J=TE (B.5)

For relatively low frequencies« 1 GHz), the time variation of the electric disgatent

(%—%:go%—%) is negligible with respect to the induced currdensity J =7E), so the
Ampere’s law (Eqg. (B.2c)) becomes:
OxH=J (B.6)

To further reduce the Maxwell's equations, a magnetctor potentialA is introduced as

158



B=0OxA (B.7)
So that the Gauss-Faraday law (Eq. (B.2b)) is aatizally satisfied:0 B = O{0x A) =0.
Replace the magnetic flux densiBy by the magnetic vector potentidl in Eq. (B.2d):

DXE:—G_EZ——G(DXA) :—Dxa_LA\zE:—a_LA (88)
ot ot ot ot

Equation (B.8) represents the relationship betwthenelectric field strength and the time
variation of the magnetic vector potential.

In summary, the necessary equations for the magaedélysis are:
m Maxwell's equation — Ampeére’s lawxH =J
m Useful relations:

B=0xA, B=(H+M)

A J_;g

E=-5,
ot —

Boundary conditions and initial conditions

The two types of boundary conditions are: (1) inggbsnagnetic vector potentidl* on
the surfacedQ,, and (2) imposed magnetic field strengdlt parallel to the surfaa€,, .

The intersection of the two surfaces is empty ama&lrtunion is the total surface of the
material body. Mathematically, the boundary comaisi can be expressed as:

A=A on 0Q, (B.9a)
Hxn=H*x non 0Q, (B.9b)

wheredQ,(10Q,, =0, 0Q,U0Q, =0Q,.
The initial magnetic vector potential is given g tinitial condition:

A(xt=0)= A (X (B.10)

B.1.2. Mechanical part

Balance of linear momentum: The time rate of momenthange of a material body is
equal to the resultant force acting upon the bdeélyngen and Maugin, 1990). The global
form of this balance is:

d ou
—[p=da=¢Td f B.11
dtgj;pat T S+§£— (B.11)

a0,
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wherep is the mass density; is the domain occupied by the material body atis&antt; u

is the displacement vector; is the traction on the boundary surfa@®, of the material
body; f is the body force density (including mechanicall aectro-magnetic parts). By
introducing the Cauchy stress tengor(g lh =T, wheren is the outward unit normal of the

body surface), and using the conservation of maddlae divergence theorem, the local form
of the balance equation can be obtained as:

2
Dﬂi+i=p% B.12

No mechanical body force is considered in the mate®ince FSMA is only magnetizable,
we have (Pérez-Aparicio and Sosa, 2004)

f=3xB+0(t,H)M (B.13)
The T part on the right-hand side of Eq. (B.13) is tlentz force density, and th& part
is the force density due to the gradient of magrfetld. Then Eq. (B.12) can be rewritten as:

2 2

O+ f=p = D+ xB+D( HY M = p 22

= (B.14)

Balance of angular momentum: The time rate of argmlomentum change of a material
body is equal to the resultant moment of all foraed the resultant of couples acting upon the
body (Eringen and Maugin, 1990). The mathematigpfession is:

d 0
aﬂtxxpa_% dQ =a<£‘2<x;|' ds+i[_>«_f+_(‘f] @ (B.15)

where x is the position in the material bod@" is the magnetic couple density:
C"=Mx(1H) B.16)

After several calculations (see details in Apper@i%), the local form can be reached:
skwg = skvi_MO (1, _H) (B.17)

where the definitionskvg:%(g—tg). Due to the presence of the magnetic body couple,

the mechanical stress tensoris not symmetric.

There are two boundary conditions: imposed disphece u* on the surfaceQ, and
applied tractionl * on the surfac®Q; . The intersection of these two surfaces is empty a

their union is the total surface of the materialypdViathematically, we have
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(B.18a)
* on 0Q, (B.18Db)
wheredQ, M10Q, =0, 0Q,UdQ, =0Q..

mech

One important thing to point out: The surface fofce has two contributions, i.el,” of

mag mag

mechanical origin and ™ of magnetic originT ™" is defined as the jump of the Maxwell

stress tensog™", i.e., T™ = HgMWHD_h (Hirsinger and Billardon, 1995). For magnetizable

and non-polarizable materials, the general exmassif the Maxwell stresgr™" is:

o™ :ﬂDB—%,uO(ﬂDj)l, where | is the identity tensor. In magneto-static case (no

electric current), we hav#g“"wuﬁ@_l:%yo(m@z_n (Kankanala and Triantafyllidis, 2004,

Haldar et al., 2011).

The initial displacement and velocity are giventhg initial conditions:

u(x t=0)=u, (% (Ba)

2 (x,t=0)=v, (9 (B.19b)

B.1.3. Summary of fully coupled dynamic magneto-mdmnical analysis
A summary of variables, equations and boundary itiond concerned in the general

magneto-mechanical analysis is given below:

Magnetic part
m Governing equation[JxH =J
m Useful relations

B=0OxA, B=/(H+M)

E= —a_A , g =TE
ot
m Boundary conditions
A= A* on 0Q,
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Hxn=H*x n on 0Q,

m Initial condition: A(x,t=0)= A (X)

Mechanical part

m Variables:u, £, g, o’
Due to the presence of the magnetic body couplke,ntiechanical stress tensar is

generally non-symmetric. In this case, the symroetiiess tensoa=rS (related tog by Eq.
(B. 20) is generally chosen as the state variaddel in the constitutive equations.
m Governing equations
D Dt=7+i =0

skug = sk 0 (44 1)
The body forcef includes mechanical and electro-magnetic bodyefarc

m Compatibility equation:£ =%(Dg+ t (Dg))

Small strain and negligible rotation approximatisapplied.
(B.20)

m Useful relation o° = g +(1,H) O M

We take the expression gfs from (Haldar et al., 2011). Similar expression @so be

found in (Hirsinger and Billardon, 1995).
m Boundary conditions
u=u on 9Q,
gh=T on 0Q;
The surface forc@ * includes the mechanical surface force and the etaggsurface force.

m Initial conditions:u(x, t=0)= u, (X, g—%o_(,t =0)=v,(x).

Coupled constitutive equationg =£(g”,H), M =M (@°,H)

Note 1 If the magnetic body couple is zero (the magma¢ion M is co-linear with the

magnetic fieldH), the mechanical stress tengpris symmetric. In this casej is directly

used as a state variable in the constutive equatamd there is no need to calculgtsmr
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consider the balance law of angular momemtum &@-,(B.17):skwo = skv(_IVID (,uo_l-))E
0).

Note 2 Static analysis (special case in dynamic anglysis
In static case, the magnetic flux dengtgoes not change with time. So there is no electric
field E (induced by the time-variation @) or electric currentl. Therefore, the magnetic

analysis part can be simplified as follows:

m Variables: A, B, H, M
m Governing equationfJxH =0
m Useful relations:B=0x A, B=1,(H+M)
m Boundary conditions
A= A*on 0Q,

Hxn=H*xn on 0Q,

B.2. Weak form formulations

The weak form formulations developed in this suttiee and the finite element
formulations in the following are for the constiiet model proposed in Chapter 4. In the
constitutive model, the magnetization is co-lineath the magnetic field (the constitutive
model gives the magnetization along the magnetid)i Therefore, the magnetic body couple
is zero. The symmetric stress tengodirectly enters the constutitve model as a stateable.
Appendix C.2 verifies that the magnetic body couplge to the magnetization part
perpendicular to the magnetic field can be negtecide formulations can be applied to all

cases where there is no or negligible magnetic lcodyple.
The displacementi and the magnetic vector potentidl are the unknowns that the

mechanical and magnetic governing equations shsolde respectively. So there are six

nodal unknowns of the magneto-mechanical anal;t/éi_s::_ﬁ} = t{ u,u,u, A, A, Af} :
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B.2.1. Magnetic part

The magnetic governing equation (Eq. (B.6)) is Wwed by virtual variation of the
magnetic vector potentiab,(x), and then integrated over the material dom@inWith
boundary condition and constitutive relations (Ed@&5), (B.8) and (B.9b)), we obtain the

weak form formulation after several calculations:

[(Dxw,) M dQ+Ir%—f@A do- [ (Hxn@, ds= [ (Hx Y@, ds(w,0 P (B.21)

Q 90, 0y,
whereD is a collection of admissible magnetic vector paads in the domairf2 without

considering the boundary condition of impos&ti(Eq. (B.9a)). Eqg. (B.9a) is multiplied by

an admissible magnetic field ' and then integrated over the surfage,

[ (Hxn)Ads= [ (HxjOA ds (MO [oQ,]) (B.22)

aQ, aQ,

where D'[GQA] is a collection of admissible magnetic field strgngn the boundaq , .

B.2.2. Mechanical part

The governing equation (Eq. (B.14)) is weightedvioyual variation of the displacement
vector w,(X) and then integrated over the material domirBy considering the boundary
condition of applied traction (Eg. (B.18b)), weieer at the weak form formulation of the

governing equation after several calculations:

2
Jo0:e@) da+[p2tw, do- | Tw, ds | f, @+ [ T, dsw,0 §  (B:23)
Q Q 20, Q

0Q;
where C is a set of admissible displacements in the dondaiwithout considering the
boundary condition of imposed displacement (Eq.188)). To obtain the weak form

formulation of Eg. (B.18a), the right-hand andedind sides of this equation are multiplied

by an admissible traction' and then integrated over the surfaie, :

fumds= [ 40T ds (O doQ,]) (B.24)

whereC'[aQu] is a collection of admissible tractions on the acefoQ,, .
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B.3. Finite element formulations

B.3.1. Magnetic part

The magnetic vector potenti@d(X) is discretized as:

AxD=Y NQAG=[ NI ) (8.29

where n, is the total number of nodes in the material domai(t) and N, (x) are
respectively the magnetic vector potential and shape function on nodk. In matrix

expression[N(g()] is composed of all the shape functions {amjt)} is composed of all the

nodal magnetic vector potentials:

N( O 0 N.(¥ O 0
[N®¥]=|] 0 N® O ,..., O N (x) O (B.26)
0 0 N (% 0 0 N (x)

{Am} = {A®. A0, A0 & 0. A0, A ¢ (B.27)
Similarly, the virtual variation of magnetic vectootential w, can also be expressed as:

@, (X) =[N [{ w} (B.28)

t Yy 4 X y z

where{w,} = {a&l,wA,l,wAyl,mD, Wp WXy ,a)A,rb} .

With Eqgs. (B.25) and (B.28), we can make followicgjculations for each term in the
weak form magnetic governing equations (Egs. (Bazb) (B.22) ):

m Time variation term (¥ term on the left-hand side of Eq. (B.21))

r%@AdQ = {w,} [MCI{ A )} (B.29)

Q
where A(t) is the first order partial derivative &k with respect to timd; [MC] is the

electrical conductivity matri{MC| =Ir INR][NQ] &

m Unknown surface magnetic field'{3erm on the left-hand side of Eq. (B.21))

[ (Hxn)@o,ds="{e,}[ GM{ H(Y} (B.30)

30,
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[GM] is the localization matrix [Bonnet and Frangi, 2DO6H(?)} is the nodal magnetic

field (H xn) parallel to the boundargQ,,.

m Applied magnetic field term (right-hand side af.EB.21))
[ (H*xn) 0, ds="{e}{ FM()}

a0,

(B.31)

where the nodal applied magnetic field strengtf &M (t)} = J' IN®](H*(x §xn) ds.

20,

m Internal effort term (¥ term on the left-hand side of Eq. (B.21))

We have:
Oxw, =[] wi} (B.32)
where:
[ 0 0 0 0 ]
0 3 N, (x) ay N, (%) 0 37 N, (% ay N, (¥
[3.09)=| < N 0 ~IN® e TN o -INu| (B33
¢ 0z * ax ‘9z ax ® -
0 0 0 0
i a—leQQ x N, (%) 0 ay N, (¥ Ix N, (¥ 0 _
Similarly, we have:
OxA=[3.(]{ A )
With Egs. (B.7) and (B.34), we have:
B=[J.X]{ A (B.35)

Moreover, by Eq. (B.3b) and the constitutive equatfor magnetization densityl (Eq.

(103)), we obtain:

(B.36)

E:,uo(H"' a

f 4{@H+< H-MS>(IVL-aFDB H= QHz z 2t

M
where C(H.2,, )= @+ 28k, + 7 8los,* 2 80s ) (oot Fus® o]

The six domains (i.e.$11, Si2, $1, S2 1, S2) are defined for the magnitudé of the

magnetic field strength in Table B.1, whé¥i is the saturation magnetizaticm, a, andag
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are magnetic susceptibilities respectively for masite variant 1, 2 and 3 (see Chapter 4 —
sub-section 4.2.3.3).

From Egs. (B.35) and (B.36), we obtain:

H = B.37

_C(Hzlzz%)[()] (B.37)
By introducing Egs. (B.32) and (B.37), we have:

[(Oxw,)H (8) do="{w}[KM(H, 3, 3, 2)]{ A} (B.39)

Q

where[KM(H, z, 2, z)| = f TION I e.

C(H 2,%,3)

With Egs. (B.29), (B.30), (B.31) and (B.38), Eq.ZB) can be reduced to:
{odkM(H.2,2, 2){ A+ {w}[ ML AR - {wd[ oM B} ={w}{ PO}
=[MCl{A} +[KM H 7 2 3]{ @}-[ GN{ )} ={ Fu)} (8.39)

Table B.1. Domains for magnetic field strength.

Domains for Variant 1 Domains for Variant 2 Domainsfor Variant 3
Si1 HSMS Sy HSMS Ss1 HSMS
Siz H> S» H> Ss2 H>

m Boundary condition (Eq. (B.22))
With the discretization of the magnetic vector paied (Eq. (B.25)), the left-hand and
right-hand sides of Eq. (B.22) can be written asn(iset and Frangi, 2006):

[ (Hxn)oA ds="{ H} ‘[ cM{ &)} (B.40a)

90,

[ (Hxn)ma ds="{ H}{ A(x) (B.40b)

90,
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WhereH " and {A’} are respectively the virtual nodal magnetic fiféﬁxn) and the nodal

imposed magnetic vector potential on the boundipy . Therefore, Eq. (B.22) can be

reduced to:

[eM{ A} ={ A<(9} (B.41)
In summary, the final discretized equations for ez analysis are:

[MCJ{A D} +[KM H 3 2 2]{ @3 -[ GM{ )} ={ F¥)}
[em]{ A} ={ A(3}

B.3.2. Mechanical part
The displacement field(X) can be discretized using the same nodes and $hap@ns

as those used in the previous magnetic part ¢ud-section B.3.1):

u(x, 9 =Z N3y =[ N ¢} (B.42)
where

{uco} ="{w 0, w0 g (04 (0, () (B)43
Similarly, the virtual variation of displacement can be expressed as:

@,(¥) =[N} (B.44)

X wY o w? }

t
_ y z
Where{wu} = {wﬁ,y W, 1, W, UL, & Wy Wy g

With Egs. (B.42) and (B.44), the following calcudeits are made successively for each
term in the weak form formulations (Eqgs. (B.23) éBd24)):
m Inertial term (Qd term on the left-hand side of Eq. (B.23))
62g _t ..
Ip?@u dQ ="{w}[M]{u} (B.45)
Q

where(t) is the partial derivative of order 2 afwith respect to time; [M] is the mass

matrix: [M]=j,0t[N(g<)][ N(Y| €.

m Unknown surface traction 'ferm on the left-hand side of Eq. (B.23))
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J"I_'Df_uu ds={a}[ d{ B (B.46)

00,
where [G] is the localization matrix (Bonnet and Frangi08) {T} is the nodal force on the

surfacedQ, .

m External effort (right-hand side of Eq. (B.23))

jf@ do+ [ T' @, ds={a} { F(Y} (B.47)

30,

where the nodal external force {& (t)} j [N f(x 0 dQ+ j [ N3] (X d.

a0,

m Internal effort term (fterm on the left-hand side of Eq. (B.23))

The infinitesimal strain tensore is related to the displacementi(xt) by:

X yy

g(g):%(mg(g, t)+'0u(x t)). So the strain vectdre(u)} :t{gx, Ep Eon 200 F 0 2 )

can be expressed as:

{eW)} =[] W x B} (B.48)
Where
ONl 0 0 aan 0 0
E 0x
oN
0 ﬂ 0O, ccernn. , 0 o 0
oy ay
O 0 % O 0 aN"p
0z
[3.%] = 0z (B.49)
s\ oN oN '
ON, 9N, 0 L L 0
ay ox ay 0x
N goon N, N,
0z 0Xx 0z 0 X
ON, 0N, N, ON
_— O p "p
i 0z ay 0z ay |

Similarly, the strain vecto{re(g)u)} related to the virtual displacement variati@n(x) can

be expressed as:
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{e(@)} =[I.(9){w} (B.50)
The state equation for strain tensor (Eq. (101)) loa changed to the state equation for the

stress vectofo(x, 1)} = {0 (X 1), T,y (% 1), T, (1), T, (X,1), T (x,1),0 ,(x.B):

{o(x 0} =[R[ LQ{ ux )
“[RI( @ 3-{UD) z.+{ U £ B, 20 {1V, z)

where R] is the elastic rigidity matrix of FSMA martensitgU;} (i = 1, 2, 3) is the strain

(B.51)

vector corresponding to the transformation strailmsd)rl;i for varianti (see Eq. (81) in

Chapter 4).
With Egs. (B.50) and (B.51), we have:
Jo:e@,) da="{a}[x]{d-{aH 2« 2. 2. 2} (B.52)

where K] is the stiffness matrix andZ{{(z;,, 23, z31)} is a supplementary effort related to the

volume-fraction transformations between the vagant
[K]=]"[9.R][R[ 103] &
Q

{22(2,, 25 2,)}
= TLIREW A W L BEW D ¢ IY-HU)z ) @

With Egs. (B.45), (B.46), (B.47) and (B.52), Eq..ZB) can be changed to the following

finite element formulation:
{a}[KH{u®} + {w} M} - {o{ 22 2, 2, 2}-{a} H Th={a} ©}
= [M{a} +[c{u®} {22 2, 2. L} -[ H T}={ F} (B.53)

m Boundary condition of imposed displacement (Eq24B)
With the displacement discretization (Eq. (B.48)§ left-hand and right-hand sides of Eq.
(B.24) can be respectively rewritten as (Bonnet larahgi, 2006):

JuT as="{ T} 4{ W} (B.54a)
[urm ds="{ TH{ ¢ (¥ (B.54b)

where {T’} and {u’} are respectively the virtual nodal force and timeposed nodal

displacement on the surfad€, . With Eq. (B.54), Eq. (B.24) can be reduced to:

170



[Gl{ucv} ={u(8} (B.55)

In summary, the final discretized equations for haggcal analysis are:
[M]{uco} +[k{ud} {2 2., 2. 2}-[ ® Th={ €}
[G{uco} ={ (3}

B.4. Summary

In this section, the finite element formulationg flolly coupled magneto-mechanical
analysis of FSMA are derived. They are:

m For magnetic analysis
[MCJ{A D} +[KM H 3 2 2]{ & -[ GM{ €} ={ Fw}
[eMI{ A} ={ A(3}

m For mechanical analysis

[M){ae)} +[k{u®} {22 2., 2. 2} -[ H T}={ F}
[Gl{uco} ={u*(9}

The iterative decoupled approach of structural ywislcan be used (see the flowchart in
Fig. B.1): magnetic and mechanical analyses areemsadcessively, and then pass on to the
‘martensite reorientation’ process where the voldraetions of the martensite variants can
be updated. An equilibrium check (check of magnatid mechanical governing equations) is

made at the end of the iteration.

v

‘ Magnetic Analysis ‘

!

[ Magnetic body force and surface force J

‘ Mechanical Analysis ‘
‘ Martensite reorientation

/‘ ~_
no __— Equilibrium -
check

yes

Next step

Fig. B.1. lteration of magneto-mechanical analysis.
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Appendix C. Non-symmetric stress tensor of magnetimaterials

in magnetic field

C.1. Introduction— origin of the non-symmetric stress tensor for nedignmaterials 172

C.2. Non-symmetric stress tensor in ferromagnéiape memory alloys 174

C.1. Introduction — origin of the non-symmetric stress tensor for magetic

materials

When a magnetic material is placed in the magnktic, magnetic body couple is
generally induced in the material, which leads e hon-symmetric stress tensor of the
material. In this section, the relation between thagnetic body couple and the non-
symmetric stress tensor is derived. Similar deduastican be found in Kiefer (2006).

Balance of angular momentum: The time rate of argmlomentum change of a material
body is equal to the resultant moment of all foraed the resultant of couples acting upon the
body (Eringen and Maugin, 1990). It is mathemalycekpressed as:

d d

where &, is the domain occupied by the material body atitiséantt; 0Q,is the boundary
surface of the material body is the position in the material body;is the displacement
vector; T is the traction on the boundary surfadeand f "are respectively the mechanical
and magnetic body force densiti€3! is the magnetic couple density, which is expressed
C"=Mx(p,H) (C.2)

wherey (=47rx107 TOM/A) is the vacuum permeabilityd is the magnetic field strength

andM is the magnetization of the materialHfandM are in the same direction, there is no
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magnetic coupleC™ =0); if not, due to the presence of the magnetic @', the Cauchy

stress tensog is generally not symmetric.

For the convenience of deriving the relation betw€€ and the non-symmetry af, Eq.

(C.1) is rewritten by index notation for Cartes@ordinates:
d au, B
Eipg”k)gﬁ dQ_agiqjkﬂ ds-l-g'!:[él‘jk X+ M+ O] @ (C.3)

where ¢, is the Levi-Civita symbol. The term on the left-daside of Eq. (C.3) can be

rewritten as:

d u,
— | pg, . x — dQ
dté':p uk)ﬂ at

0u, ax \( du; au \(d

:J.p‘gijk)ﬁ[?zlj dQ"‘_‘-p‘gijk (G_)Ej(a_t]j dQ+J-(£ijk )u(a_tJJ(d_f'*'pVJj d
Q Q
oy \(dp

= X || == D
ipf.,kx[ = J( & +p.Y,j

0°u. ou \(dp
= | peyx —’J dQ + (f x—‘j(—wvj o (C.4)
i K (at2 J ot \de T

By conservation of mas;%étov"I =0), the second term on the right-hand side of E4)(C

0%y,
—7 | 4+ [payy R[5 x
Ql Ql

is zero and we finally obtain:
d ou, 0°u,
— | pg . x—L dQ=| pe, x| —-| & C.5
dtf!:pljk)g at S:!:puk |(at2 ( )
In the first term on the right-hand side of Eq.3)Creplace the tractioh with the Cauchy

stress tensog and use the divergence theorem:

Sﬁ‘gijk)?-rj ds= Sﬁ & X0, n ds

a0, a0,

= [ & (x,0y +x0,,) dQ
Q
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= J- £y 0y dQ+ J- & X0y, dQ (C.6)
Introducing Egs. (C.5) and (C.6) into Eq. (C.3), elain:

_[[Mk’?{ ]} dQ:'[giijji dQ"’I“‘ﬂ'k £a,, CQ+I[§|< ix(jf+j1m)+kcn} @
Q, Q o,

n 0% N
jjgiik)g oy + i +i"-p 5 dQJ’J.(‘?ijji +¢") d=0 (C.7)
Q, Q

2
u.
By the balance of linear momentura (, + f, + ™ =p 6t2] ), the first term on the left-hand

side of Eq. (C.7) is zero and we obtain:
[ (g4 +G") d=0
Q

m _
= &,0; +G =0

which means:

0,,~0,=Cj (C.8a)
05—~ 03 =Cl (C.8b)
0y ~0,;=C5 (C.8c)

C.2. Non-symmetric stress tensor in ferromagnetich®pe memory alloys

In this section, we calculate the maximum diffeeig—0;j, i) due to the magnetic body
couple in Ni-Mn-Ga ferromagnetic shape memory aldyhe material is assumed to be in the
state of martensite variant Il (with short axis rgac-coordinate) consisting of a single
magnetic domain. A magnetic fieldy alongx;-coordinate is applied (see Fig. C.1(a)). By Eq.

(C.2), the magnetic body coup™is calculated a€™ = (0, 0, — i, H,M, ), whereM; is the
magnetization component of the material aloggoordinate (shown in Fig. C.1(a)). So in
C", only the componenE;' (=-x,H,M,) is non-zero. By Eq. (C.8a), we have:

0, —0,=UHM, o
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For variant II's magnetization curvéi{—H;, whereM; is magnetization component along
the magnetic field, shown in Fig. C.1(a)), we caakmlinear approximations as shown in Fig.
1(b), wherea is the magnetic susceptibility of variant Il. Thee have:

aH, (O<H,< MS)
a

M,(H,) = M (C.10)
M, H,2 as)

where Mg is the saturation magnetization. By the relatioetween M; and M

(M7 +MZ=M?), we have:

JMZ-a’H} (0<H,< MS)

M,(H,) = a (C.11)

M
0 H,2— )
a

With Egs. (C.9) and (C.11), we obtain:

poHAMZ=a"H? (05 H,< =)

0, -0,= y (C.12)
0 H 2= )

a

The maximum dz1—012) is obtained at the critical magnetic fidld defined by:

opHMI-a’H))
oH, -
S N D"_ (C.13)
az(luoHl‘\/Msz_azle) >0 2a
oH,?
Hy=H,

Therefore, the maximung{;—c12)max IS:

M 2
(0217 012) mex = IUOZa > (C.14)

For Ni-Mn-Ga ferromagnetic shape memory alloys, hese: Ms = 500,000 A/ma = 1.1
(Heczko, 2005). With these values, Eqgs. (C.13)(&hil4) are calculated as:
(0y—0p) =014 MPa atpH = 04 (C.15)
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(@

|
» H,

X

;Hl

X» 7777777777777

Fig. C.1. (a) Ni-Mn-Ga sample (single magnetic dowmis assumed) in the magnetic fiéld along
x;-coordinate M is the magnetization vector in the samplg;andM, are magnetization components
respectively alongy- andx,-coordinate. (b) Linear approximation (dashed lioejhe magnetization
curve (solid line) for martensite variant Il (wighort axis along.-coordinate).a is the magnetic

susceptibility;Ms is the saturation magnetization.

The twinning stress for type | twin boundary motieraround 1 ~ 2 MPa, which is almost
ten times §21—012)max from the magnetic body couple. So the magnetio/lmmdiple has little
influence on the type I twin boundary motion.

For the type Il twin boundary motion (Straka et 2011b), its twinning stress (0.05 ~ 0.3
MPa) is comparable withvf1—012)max. SO the magnetic body couple might influence tipet
Il twin boundary motion. However, long before reiaghthe critical magnetic fieldoH, = 0.4
T, the twin boundary motion (due to the magnetis@tnopic energy difference) has already
completed at such a low twinning stress, and thtemad is composed of single martensite
variant whose easy-axis of magnetization is aldvegrhagnetic field. Therefore, there is no
magnetic couple in the material (magnetization aragjnetic field are in the same direction,
so the magnetic couple is zero by Eq. (C.2)).

In conclusion, for both type | and Il twin boundanptions in the magnetic field, there is
no need to consider the effects of the magneticy bbmiple and the stress tensor of the
material can be assumed to be symmetric. In lileeathe magnetic body couples are always
negligible in soft magnetic materials (zero magragion without magnetic field) and only in
hard magnets (large permanent magnetization) ansidered the magnetic body couples
(Eringen and Maugin, 1990; Hirsinger and Billardd895).
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