G. Sciaini and R. Miller, Femtosecond electron diffraction: heralding the era of atomically resolved dynamics, Reports on Progress in Physics, vol.74, issue.9, p.96101, 2011.
DOI : 10.1088/0034-4885/74/9/096101

B. J. Siwick, An Atomic-Level View of Melting Using Femtosecond Electron Diffraction, Science, vol.302, issue.5649, pp.1382-1385, 2003.
DOI : 10.1126/science.1090052

M. Harb, Excitation of longitudinal and transverse coherent acoustic phonons in nanometer free-standing films of (001) Si, Physical Review B, vol.79, issue.9, 2009.
DOI : 10.1103/PhysRevB.79.094301

T. Van-oudheusden, E. F. De-jong, S. B. Van-der-geer, W. P. Op-'t-root, O. J. Luiten et al., Electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range, Journal of Applied Physics, vol.175, issue.9, 2007.
DOI : 10.1364/OL.30.001057

J. B. Hastings, F. M. Rudakov, D. H. Dowell, J. F. Schmerge, J. D. Cardoza et al., Ultrafast time-resolved electron diffraction with megavolt electron beams, Applied Physics Letters, vol.48, issue.18, p.89, 2006.
DOI : 10.1063/1.2263560

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.410.328

P. Musumeci, J. T. Moody, C. M. Scoby, M. S. Gutierrez, and M. Westfall, Laserinduced melting of a single crystal gold sample by time-resolved ultrafast relativistic electron diffraction, Applied Physics Letters, issue.6 6, p.97, 2010.

J. M. Dawson and T. Tajima, Laser electron accelerator, Physical Review Letters, vol.43, issue.4 7, pp.267-270, 1979.

D. Darrow, F. N. Neely, and . Walsh, Electron acceleration from the breaking of electron plasma waves, Nature, vol.377, issue.7, pp.606-608, 1995.
URL : https://hal.archives-ouvertes.fr/hal-01164880

D. Gordon, K. C. Tzeng, C. E. Clayton, A. E. Dangor, V. Malka et al., Observation of Electron Energies Beyond the Linear Dephasing Limit from a Laser-Excited Relativistic Plasma Wave, Physical Review Letters, vol.80, issue.10, pp.2133-2136, 1998.
DOI : 10.1103/PhysRevLett.80.2133

URL : https://hal.archives-ouvertes.fr/hal-01164936

V. Malka, J. Faure, J. R. Marquès, F. Amiranoff, J. P. Rousseau et al., Characterization of electron beams produced by ultrashort (30 fs) laser pulses, Physics of Plasmas, vol.22, issue.6, pp.2605-2608, 2001.
DOI : 10.1063/1.873463

URL : https://hal.archives-ouvertes.fr/hal-00572578

S. P. Mangles, Monoenergetic beams of relativistic electrons from intense laser???plasma interactions, Nature, vol.3, issue.7008, pp.535-538, 2004.
DOI : 10.1063/1.1447556

C. G. Geddes, High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding, Nature, vol.22, issue.7008, pp.538-541, 2004.
DOI : 10.1063/1.1633003

URL : http://library.tue.nl/csp/dare/LinkToRepository.csp?recordnumber=690192

J. Faure, A laser???plasma accelerator producing monoenergetic electron beams, Nature, vol.55, issue.7008, pp.541-544, 2004.
DOI : 10.1017/S0022377899007515

URL : https://hal.archives-ouvertes.fr/hal-00508775

W. L. Bragg and W. H. Bragg, The reflection of x-rays by crystals, Proceedings of the Royal Society of London, pp.428-438, 1913.

W. L. Bragg, The Specular Reflection of X-rays., Nature, vol.90, issue.2250, pp.410-410, 1912.
DOI : 10.1038/090410b0

J. Howe and B. Fultz, Transmission electron microscopy and diffractometry of materials, fourth edition, p.19, 2013.

F. Salvat, Elastic scattering of fast electrons and positrons by atoms, Physical Review A, vol.43, issue.1, pp.578-581, 1991.
DOI : 10.1103/PhysRevA.43.578

URL : http://diposit.ub.edu/dspace/bitstream/2445/9528/1/62112.pdf

W. E. King, Ultrafast electron microscopy in materials science, biology, and chemistry, J. Appl. Phys, vol.97, p.24, 2005.
DOI : 10.1063/1.1927699

J. Faure, B. Van-der-geer, B. Beaurepaire, G. Gallé, A. Vernier et al., Concept of a laser-plasma-based electron source for sub-10-fs electron diffraction, Physical Review Accelerators and Beams, vol.19, issue.2
DOI : 10.1103/PhysRevAccelBeams.19.021302

URL : https://hal.archives-ouvertes.fr/hal-01403058

T. Van-oudheusden, E. F. De-jong, S. B. Van-der-geer, W. P. Op-'t-root, O. J. Luiten et al., Electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range, Journal of Applied Physics, vol.175, issue.9, p.26, 2007.
DOI : 10.1364/OL.30.001057

Y. Murooka, N. Naruse, S. Sakakihara, M. Ishimaru, J. Yang et al., Transmission-electron diffraction by MeV electron pulses, Applied Physics Letters, vol.98, issue.25, pp.98-125, 2011.
DOI : 10.1109/TED.2002.806962

R. P. Chatelain, V. R. Morrison, C. Godbout, and B. J. Siwick, Ultrafast electron diffraction with radio-frequency compressed electron pulses, Applied Physics Letters, vol.101, issue.8, pp.2012-2039
DOI : 10.1016/j.ultramic.2012.03.001

O. Lundh, Few femtosecond, few kiloampere electron bunch produced by a laser???plasma accelerator, Nature Physics, vol.7359, issue.3, pp.219-222, 2011.
DOI : 10.1063/1.2360988

URL : https://hal.archives-ouvertes.fr/hal-00803781

F. Bohle, Compression of CEP-stable multi-mJ laser pulses down to 4???fs in long hollow fibers, Laser Physics Letters, vol.11, issue.9, p.27, 2014.
DOI : 10.1088/1612-2011/11/9/095401

J. Faure, Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses, Nature, vol.77, issue.7120, pp.737-739, 2006.
DOI : 10.1038/nature05393

URL : https://hal.archives-ouvertes.fr/hal-00502237

E. Esarey, Physics of laser-driven plasma-based electron accelerators, Reviews of Modern Physics, vol.81, issue.3, pp.1229-1285, 2009.
DOI : 10.1103/RevModPhys.81.1229

C. Rechatin, Controlling the phase-space volume of injected electrons in a laserplasma accelerator, Physical Review Letters, pp.9-28, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00498543

J. M. Dawson and T. Tajima, Laser electron accelerator, Physical Review Letters, vol.43, issue.4, pp.267-270, 1979.

S. P. Mangles, Monoenergetic beams of relativistic electrons from intense laser???plasma interactions, Nature, vol.3, issue.7008, pp.535-538, 2004.
DOI : 10.1063/1.1447556

C. G. Geddes, High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding, Nature, vol.22, issue.7008, pp.538-541, 2004.
DOI : 10.1063/1.1633003

URL : http://library.tue.nl/csp/dare/LinkToRepository.csp?recordnumber=690192

J. Faure, A laser???plasma accelerator producing monoenergetic electron beams, Nature, vol.55, issue.7008, pp.541-544, 2004.
DOI : 10.1017/S0022377899007515

URL : https://hal.archives-ouvertes.fr/hal-00508775

E. Esarey, P. Sprangle, J. Krall, and A. Ting, Overview of plasma-based accelerator concepts, IEEE Transactions on Plasma Science, vol.24, issue.2, pp.252-288, 1996.
DOI : 10.1109/27.509991

W. Lu, A nonlinear theory for multidimensional relativistic plasma wave wakefields, Physics of Plasmas, vol.30, issue.5, pp.31-49, 2006.
DOI : 10.1063/1.866349

W. Lu, Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime, Physical Review Special Topics - Accelerators and Beams, vol.10, issue.6, pp.31-50, 2007.
DOI : 10.1103/PhysRevSTAB.10.061301

URL : http://doi.org/10.1103/physrevstab.10.061301

A. V. Brantov, Controlled electron injection into the wake wave using plasma density inhomogeneity, Physics of Plasmas, vol.16, issue.7, pp.31-48, 2008.
DOI : 10.1063/1.1948347

E. Esarey, Physics of laser-driven plasma-based electron accelerators, Reviews of Modern Physics, vol.81, issue.3, pp.1229-1285, 2009.
DOI : 10.1103/RevModPhys.81.1229

T. Chien, Spatially Localized Self-Injection of Electrons in a Self-Modulated Laser-Wakefield Accelerator by Using a Laser-Induced Transient Density Ramp, THÉORIE DE L'ACCÉLÉRATION LASER-PLASMA, pp.31-34, 2005.
DOI : 10.1103/PhysRevLett.94.115003

J. Faure, Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses, Nature, vol.77, issue.7120, p.31, 2006.
DOI : 10.1038/nature05393

URL : https://hal.archives-ouvertes.fr/hal-00502237

C. G. Geddes, Plasma-density-gradient injection of low absolute-momentumspread electron bunches, Physical Review Letters, vol.100, p.31, 2008.
DOI : 10.1103/physrevlett.100.215004

URL : http://escholarship.org/uc/item/2ph3v80c.pdf

C. Rechatin, Controlling the phase-space volume of injected electrons in a laserplasma accelerator, Physical Review Letters, vol.102, p.31, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00498543

C. Mcguffey, Ionization Induced Trapping in a Laser Wakefield Accelerator, Physical Review Letters, vol.104, issue.2, p.31, 2010.
DOI : 10.1103/PhysRevLett.104.025004

A. Pak, Injection and Trapping of Tunnel-Ionized Electrons into Laser-Produced Wakes, Physical Review Letters, vol.104, issue.2, p.31, 2010.
DOI : 10.1103/PhysRevLett.104.025003

J. Faure, C. Rechatin, O. Lundh, L. Ammoura, and V. Malka, Injection and acceleration of quasimonoenergetic relativistic electron beams using density gradients at the edges of a plasma channel, Physics of Plasmas, vol.17, issue.8, pp.17-31, 2010.
DOI : 10.1063/1.3008051

URL : https://hal.archives-ouvertes.fr/hal-01405588

H. T. Kim, Enhancement of electron energy to the multi-gev regime by a dualstage laser-wakefield accelerator pumped by petawatt laser pulses, Physical Review Letters, vol.111, pp.31-52, 2013.

X. Wang, Quasi-monoenergetic laser-plasma acceleration of electrons to 2???GeV, Nature Communications, vol.52, pp.31-52, 2013.
DOI : 10.1038/nphoton.2012.82

Y. Glinec, High-resolution gamma-ray radiography produced by a laser-plasma driven electron source, PHYSICAL REVIEW LETTERS, vol.94, p.31, 2005.
DOI : 10.1103/physrevlett.94.025003

J. M. Cole, Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone, Scientific Reports, p.31, 2015.
DOI : 10.1088/0031-9155/54/19/N01

W. B. Mori, The physics of the nonlinear optics of plasmas at relativistic intensities for short-pulse lasers, IEEE Journal of Quantum Electronics, vol.33, issue.11, pp.1942-1953, 1997.
DOI : 10.1109/3.641309

C. Cohen-tannoudji, Mécanique quantique, pp.1404-1436, 1997.

L. Tonks, Oscillations in Ionized Gases, Physical Review, vol.33, issue.2, pp.195-210, 1929.
DOI : 10.1103/PhysRev.33.195

C. Thaury, Plasma mirrors for ultrahigh-intensity optics, Nature Physics, vol.26, issue.6, pp.424-429, 2007.
DOI : 10.1038/nphys595

URL : https://hal.archives-ouvertes.fr/hal-01166802

Y. Nomura, Attosecond phase locking of harmonics emitted from laser-produced plasmas, Nature Physics, vol.5, issue.2, pp.124-128, 2008.
DOI : 10.1103/PhysRevLett.94.103903

C. 3. Théorie-de-l-'accélération and . Laser-plasma, Borot et al. Attosecond control of collective electron motion in plasmas, Nature Physics, vol.8, pp.416-421, 2012.

S. J. Gitomer, R. D. Jones, F. Begay, A. W. Ehler, J. F. Kephart et al., Fast ions and hot electrons in the laser???plasma interaction, Physics of Fluids, vol.26, issue.8, pp.2679-2688, 1986.
DOI : 10.1063/1.865510

E. M. Perry and . Campbell, Intense high-energy proton beams from petawatt-laser irradiation of solids, Phys. Rev. Lett, vol.85, pp.2945-2948, 2000.

A. Macchi, M. Borghesi, and M. Passoni, Ion acceleration by superintense laser-plasma interaction, Reviews of Modern Physics, vol.85, issue.2, pp.751-793, 1937.
DOI : 10.1103/RevModPhys.85.751

URL : http://arxiv.org/abs/1302.1775

P. Mora, Electron cavitation and acceleration in the wake of an ultraintense, self-focused laser pulse, Physical Review E, vol.53, issue.3, p.41, 1996.
DOI : 10.1103/PhysRevE.53.R2068

P. Mora, Kinetic modeling of intense, short laser pulses propagating in tenuous plasmas, Physics of Plasmas, vol.55, issue.1, p.41, 1997.
DOI : 10.1103/PhysRevLett.31.1380

P. Mora, Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum, Phys. Rev. E, vol.58, pp.3719-3760, 1998.

M. Tzoufras, W. Lu, F. S. Tsung, C. Huang, W. B. Mori et al., Beam Loading in the Nonlinear Regime of Plasma-Based Acceleration, Physical Review Letters, vol.101, issue.14, pp.145002-145048, 2008.
DOI : 10.1103/PhysRevLett.101.145002

A. Pukhov, Laser wake field acceleration: the highly non-linear broken-wave regime, Applied Physics B: Lasers and Optics, vol.74, issue.4-5, pp.355-361, 2002.
DOI : 10.1007/s003400200795

URL : http://hdl.handle.net/11858/00-001M-0000-000F-C22D-9

M. Tzoufras, The physical picture of beam loading in the blowout regime, 2007 IEEE Particle Accelerator Conference (PAC), pp.3061-3063, 2007.
DOI : 10.1109/PAC.2007.4440668

P. Sprangle, Relativistic Self-Focusing of Short-Pulse Radiation Beams in Plasmas, IEEE Transactions on Plasma Science, vol.15, issue.2, p.52, 1987.
DOI : 10.1109/TPS.1987.4316677

C. D. Decker, The evolution of ultra???intense, short???pulse lasers in underdense plasmas, Physics of Plasmas, vol.22, issue.5, p.51, 1996.
DOI : 10.1103/PhysRevLett.68.3172

G. Sun, Self-focusing of short intense pulses in plasmas, Physics of Fluids, vol.22, issue.2, p.52, 1987.
DOI : 10.1063/1.866349

A. B. Borisov, Self-focusing of short intense pulses in plasmas, Phys. Rev. A, pp.45-52, 1992.

C. 4. Expériences-d-'accélération-d-'électrons and . Au-loa-4, 5 Références [1] J. Faure et al. A laser-plasma accelerator producing monoenergetic electron beams, Nature, vol.431, pp.541-544, 2004.

D. Strickland, Compression of amplified chirped optical pulses, Optics Communications, vol.56, issue.3, pp.219-221, 1985.
DOI : 10.1016/0030-4018(85)90120-8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.673.148

A. Jullien, 10^?10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation, Optics Letters, vol.30, issue.8, pp.920-922, 2005.
DOI : 10.1364/OL.30.000920

URL : https://hal.archives-ouvertes.fr/hal-00526430

Y. Glinec, Absolute calibration for a broad range single shot electron spectrometer, Review of Scientific Instruments, vol.77, issue.10, pp.103301-63, 2006.
DOI : 10.1103/PhysRevLett.96.105004

URL : https://hal.archives-ouvertes.fr/hal-00127096

S. C. Rae, Ionization-induced defocusing of intense laser pulses in high-pressure gases, Optics Communications, vol.97, issue.1-2, pp.25-28, 1993.
DOI : 10.1016/0030-4018(93)90611-8

J. Primot, Extended Hartmann test based on the pseudoguiding property of a Hartmann mask completed by a phase chessboard, Applied Optics, vol.39, issue.31, pp.5715-5720, 2000.
DOI : 10.1364/AO.39.005715

P. Bon, Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells, Optics Express, vol.17, issue.15, p.64, 2009.
DOI : 10.1364/OE.17.013080.m002

URL : https://hal.archives-ouvertes.fr/hal-00424664

V. Loriot, Measurement of high order kerr refractive index of major air components, Optics Express, vol.17, issue.16, p.66, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00410677

Z. H. He, High repetition-rate wakefield electron source generated by fewmillijoule , 30 fs laser pulses on a density downramp, New Journal of Physics, vol.15, p.68, 2013.
DOI : 10.1088/1367-2630/15/5/053016

URL : http://doi.org/10.1088/1367-2630/15/5/053016

T. Oksenhendler, Self-referenced spectral interferometry, Applied Physics B, p.68, 2010.
DOI : 10.1007/s00340-010-3916-y

G. Malka, E. Lefebvre, and J. L. , Experimental Observation of Electrons Accelerated in Vacuum to Relativistic Energies by a High-Intensity Laser, Physical Review Letters, vol.78, issue.17, pp.3314-3317, 1997.
DOI : 10.1103/PhysRevLett.78.3314

A. Pukhov, Z. Sheng, and J. Meyer-ter-vehn, Particle acceleration in relativistic laser channels, Physics of Plasmas, vol.76, issue.7, pp.2847-2854, 1999.
DOI : 10.1103/PhysRevA.32.2813

A. F. Lifschitz, Particle-in-Cell modelling of laser???plasma interaction using Fourier decomposition, Journal of Computational Physics, vol.228, issue.5, pp.1803-1814, 2009.
DOI : 10.1016/j.jcp.2008.11.017

URL : https://hal.archives-ouvertes.fr/hal-00576913

C. 4. Expériences-d-'accélération-d-'électrons, . W. Au-loa15-]-r, and . Gerchberg, A practical algorithm for the determination of phase from image and diffraction plane pictures, Optik, vol.35, issue.2, pp.237-246, 1972.

M. V. Ammosov, Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field, Sov. Phys. JETP, vol.64, p.76, 1986.

R. Nuter, Field ionization model implemented in Particle In Cell code and applied to laser-accelerated carbon ions, Physics of Plasmas, vol.64, issue.3, p.76, 2011.
DOI : 10.1103/PhysRevLett.96.154801

Z. He, A. G. Thomas, B. Beaurepaire, J. A. Nees, B. Hou et al., Electron diffraction using ultrafast electron bunches from a laserwakefield accelerator at khz repetition rate, Applied Physics Letters, vol.102, issue.6, pp.2013-80
DOI : 10.1063/1.4792057

URL : https://hal.archives-ouvertes.fr/hal-01159028

D. Kaganovich, A. C. Ting, D. F. Gordon, T. G. Jones, A. Zigler et al., Generation of high-energy electrons in a double gas jet and laser wakefield acceleration, IEEE Transactions on Plasma Science, vol.33, issue.2, pp.735-738, 2005.
DOI : 10.1109/TPS.2005.844611

B. Beaurepaire, Effect of the Laser Wave Front in a Laser-Plasma Accelerator, Physical Review X, vol.5, issue.3, p.83, 2015.
DOI : 10.1103/PhysRevX.5.031012

URL : https://hal.archives-ouvertes.fr/hal-01229133

C. Mcguffey, Ionization Induced Trapping in a Laser Wakefield Accelerator, Physical Review Letters, vol.104, issue.2, p.83, 2010.
DOI : 10.1103/PhysRevLett.104.025004

A. Pak, Injection and Trapping of Tunnel-Ionized Electrons into Laser-Produced Wakes, Physical Review Letters, vol.104, issue.2, p.83, 2010.
DOI : 10.1103/PhysRevLett.104.025003

J. Faure, Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses, Nature, vol.77, issue.7120, p.83, 2006.
DOI : 10.1038/nature05393

URL : https://hal.archives-ouvertes.fr/hal-00502237

C. Rechatin, Controlling the phase-space volume of injected electrons in a laserplasma accelerator, Physical Review Letters, vol.102, p.83, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00498543

C. 5. Premières, . De-diffraction-d-'électrons-expériences, and . Au, CUOS the fast calculation of space-charge effects in accelerator design, IEEE Transactions on Magnetics, vol.40, issue.2, pp.714-717, 2004.

G. Mourou and S. Williamson, Picosecond electron diffraction, Applied Physics Letters, vol.41, issue.1, pp.44-45, 1982.
DOI : 10.1063/1.1136540

M. Eichberger, N. Erasmus, K. Haupt, G. Kassier, A. Von-flotow et al., Femtosecond streaking of electron diffraction patterns to study structural dynamics in crystalline matter, Applied Physics Letters, vol.102, issue.12, pp.2013-94
DOI : 10.1103/PhysRevB.59.6063

M. Harb, Excitation of longitudinal and transverse coherent acoustic phonons in nanometer free-standing films of (001) Si, Physical Review B, vol.79, issue.9, pp.97-99, 1995.
DOI : 10.1103/PhysRevB.79.094301

J. Howe and B. Fultz, Transmission electron microscopy and diffractometry of materials, pp.2013-106

B. Beaurepaire, Electron acceleration in sub-relativistic wakefields driven by few-cycle laser pulses, New Journal of Physics, vol.16, issue.2, p.110, 2014.
DOI : 10.1088/1367-2630/16/2/023023

URL : https://hal.archives-ouvertes.fr/hal-01159022

A. J. Goers, G. A. Hine, L. Feder, B. Miao, F. Salehi et al., Multi-MeV Electron Acceleration by Subterawatt Laser Pulses, Physical Review Letters, vol.115, issue.19, p.110, 2015.
DOI : 10.1103/PhysRevLett.115.194802

O. Lundh, Few femtosecond, few kiloampere electron bunch produced by a laser???plasma accelerator, Nature Physics, vol.7359, issue.3, pp.219-222, 2011.
DOI : 10.1063/1.2360988

URL : https://hal.archives-ouvertes.fr/hal-00803781

M. Nisoli, S. D. Silvestri, and O. Svelto, Generation of high energy 10 fs pulses by a new pulse compression technique, Applied Physics Letters, vol.20, issue.20, pp.2793-2795, 1996.
DOI : 10.1063/1.116609

S. C. Wilks, J. M. Dawson, and W. B. Mori, Frequency Up-Conversion of Electromagnetic Radiation with Use of an Overdense Plasma, Physical Review Letters, vol.61, issue.3, pp.337-340, 1988.
DOI : 10.1103/PhysRevLett.61.337

W. M. Wood, C. W. Siders, and M. C. Downer, Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting, Physical Review Letters, vol.67, issue.25
DOI : 10.1103/PhysRevLett.67.3523

F. S. Tsung, Generation of ultra-intense single-cycle laser pulses by using photon deceleration, Proc. Nat. Acad. Science, pp.99-113, 2002.
DOI : 10.1103/PhysRevLett.72.490

J. Park, Generation of 15 cycle 03 TW laser pulses using a hollow-fiber pulse compressor, Optics Letters, vol.34, issue.15, pp.2342-2344, 2009.
DOI : 10.1364/OL.34.002342

X. Chen, A. Jullien, A. Malvache, L. Canova, A. Borot et al., Generation of 43 fs, 1 mJ laser pulses via compression of circularly polarized pulses in a gas-filled hollow-core fiber, Optics Letters, vol.34, issue.10, pp.1588-1590, 0113.
DOI : 10.1364/OL.34.001588

URL : https://hal.archives-ouvertes.fr/hal-00528238

F. Bohle, Compression of CEP-stable multi-mJ laser pulses down to 4???fs in long hollow fibers, Laser Physics Letters, vol.11, issue.9, p.113, 2014.
DOI : 10.1088/1612-2011/11/9/095401

N. L. Wagner, E. A. Gibson, T. Popmintchev, I. P. Christov, M. M. Murnane et al., Self-Compression of Ultrashort Pulses through Ionization-Induced Spatiotemporal Reshaping, Physical Review Letters, vol.93, issue.17, pp.173902-113, 2004.
DOI : 10.1103/PhysRevLett.93.173902

D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid et al., Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification, Optics Letters, vol.34, issue.16, pp.2459-2461, 2009.
DOI : 10.1364/OL.34.002459

Z. He, J. A. Nees, B. Hou, K. Krushelnick, and A. G. Thomas, Ionizationinduced self-compression of tightly focused femtosecond laser pulses, Phys. Rev
DOI : 10.1103/physrevlett.113.263904

C. Bourassin-bouchet, M. Stephens, S. De-rossi, F. Delmotte, and P. Chavel, Duration of ultrashort pulses in the presence of spatio-temporal coupling, Optics Express, vol.19, issue.18, pp.17357-17371, 2011.
DOI : 10.1364/OE.19.017357

URL : https://hal.archives-ouvertes.fr/hal-00617660

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, Spatio-temporal couplings in ultrashort laser pulses, Journal of Optics, vol.12, issue.9, pp.93001-114, 2010.
DOI : 10.1088/2040-8978/12/9/093001

URL : http://hdl.handle.net/11858/00-001M-0000-000F-AFAC-E

Z. Bor, Z. Gogolak, and G. Szabo, Femtosecond-resolution pulse-front distortion measurement by time-of-flight interferometry, Optics Letters, vol.14, issue.16, pp.862-864, 1989.
DOI : 10.1364/OL.14.000862

T. A. Planchon, S. Ferré, G. Hamoniaux, G. Chériaux, and J. Chambaret, Experimental evidence of 25-fs laser pulse distortion in singlet beam expanders, Optics Letters, vol.29, issue.19, pp.2300-2302, 2004.
DOI : 10.1364/OL.29.002300

URL : https://hal.archives-ouvertes.fr/hal-00526483

S. Akturk, D. Ciro, A. Amico, and . Mysyrowicz, Measuring ultrashort pulses in the single-cycle regime using frequency-resolved optical gating, Journal of the Optical Society of America B, vol.25, issue.6, pp.63-69, 2008.
DOI : 10.1364/JOSAB.25.000A63

URL : https://hal.archives-ouvertes.fr/hal-00455060

P. Chessa, E. De-wispelaere, F. Dorchies, V. Malka, J. R. Marquès et al., Temporal and Angular Resolution of the Ionization-Induced Refraction of a Short Laser Pulse in Helium Gas, Physical Review Letters, vol.82, issue.3, pp.552-555, 1999.
DOI : 10.1103/PhysRevLett.82.552

URL : https://hal.archives-ouvertes.fr/hal-01165244

A. F. Lifschitz, Particle-in-Cell modelling of laser???plasma interaction using Fourier decomposition, Journal of Computational Physics, vol.228, issue.5, pp.1803-1814, 2009.
DOI : 10.1016/j.jcp.2008.11.017

URL : https://hal.archives-ouvertes.fr/hal-00576913

M. V. Ammosov, N. B. Delone, and V. P. Krainov, Tunnel ionization of complex atoms and atomic ions by an alternating electromagnetic field, Sov. Phys. JETP, vol.64, pp.1191-1194, 1986.
DOI : 10.1117/12.938695

R. Nuter, L. Gremillet, E. Lefebvre, A. Lévy, T. Ceccotti et al., Field ionization model implemented in Particle In Cell code and applied to laser-accelerated carbon ions, Physics of Plasmas, vol.64, issue.3, p.124, 2011.
DOI : 10.1103/PhysRevLett.96.154801

B. Beaurepaire, Effect of the Laser Wave Front in a Laser-Plasma Accelerator, Physical Review X, vol.5, issue.3, p.124, 2015.
DOI : 10.1103/PhysRevX.5.031012

URL : https://hal.archives-ouvertes.fr/hal-01229133

B. Alonso, M. Miranda, Í. , J. Sola, and H. Crespo, Spatiotemporal characterization of few-cycle laser pulses, Optics Express, vol.20, issue.16, pp.17880-17893, 2012.
DOI : 10.1364/OE.20.017880

C. 7. Etude, L. De, and . Génération-de-faisceaux-d, ÉLECTRONS À 5 MEV que la méthode que nous avons étudiée permette d'accélérer un paquet avec une forte charge (environ 15 pC)

B. Enfin and . Que, énergie des électrons soit adaptée aux expériences de diffraction d'électrons, nos simulations indiquent que la qualité spatiale et plus particulièrement l'émittance de la source doit être améliorée Nous nous sommes basés sur ces résultats de simulations pour proposer un design de ligne pour le transport et le filtrage du faisceau d'électrons [14]. En filtrant astucieusement les paquets d'électrons, il est possible de produire une source de durée inférieure à 5 fs, de charge 1.5 fC et de cohérence transverse supérieure à 2 nm, Nous avons donc étudié la construction de la source d'électrons pour des expériences de diffraction résolue en temps à l'aide de simulations numériques

]. W. Références1 and . Mori, The physics of the nonlinear optics of plasmas at relativistic intensities for short-pulse lasers, IEEE Journal of Quantum Electronics, vol.33, issue.11, pp.1942-1953, 1997.

G. Sun, Self-focusing of short intense pulses in plasmas, Physics of Fluids, vol.22, issue.2, p.137, 1987.
DOI : 10.1063/1.866349

A. F. Lifschitz, Particle-in-Cell modelling of laser???plasma interaction using Fourier decomposition, Journal of Computational Physics, vol.228, issue.5, pp.1803-1814, 2009.
DOI : 10.1016/j.jcp.2008.11.017

URL : https://hal.archives-ouvertes.fr/hal-00576913

C. Ren, B. J. Duda, R. G. Hemker, W. B. Mori, T. Katsouleas et al., Compressing and focusing a short laser pulse by a thin plasma lens, Physical Review E, vol.63, issue.2
DOI : 10.1103/PhysRevE.63.026411

C. 7. Etude, L. De, and . Génération-de-faisceaux-d, ÉLECTRONS À 5 MEV terization of asymmetric pulse compression in a laser wakefield, Phys. Rev. Lett, vol.105, pp.235003-142, 2010.

C. D. Decker and W. B. Mori, Group velocity of large amplitude electromagnetic waves in a plasma, Physical Review Letters, vol.72, issue.4, pp.490-493, 0144.
DOI : 10.1103/PhysRevLett.72.490

W. Lu, Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime, Physical Review Special Topics - Accelerators and Beams, vol.10, issue.6, p.144, 2007.
DOI : 10.1103/PhysRevSTAB.10.061301

S. Kalmykov, . Beck, . Davoine, B. Lefebvre, and . Shadwick, Laser plasma acceleration with a negatively chirped pulse: all-optical control over dark current in the blowout regime, New Journal of Physics, vol.14, issue.3, pp.33025-149, 2012.
DOI : 10.1088/1367-2630/14/3/033025

V. Pathak, R. Vieira, L. Fonseca, and . Silva, Effect of the frequency chirp on laser wakefield acceleration, New Journal of Physics, vol.14, issue.2, pp.23057-149, 2012.
DOI : 10.1088/1367-2630/14/2/023057

A. Lifschitz, Optical phase effects in electron wakefield acceleration using fewcycle laser pulses, New Journal of Physics, vol.14, issue.153, pp.2012-154
DOI : 10.1088/1367-2630/14/5/053045

URL : https://hal.archives-ouvertes.fr/hal-01164040

B. Beaurepaire, Electron acceleration in sub-relativistic wakefields driven by few-cycle laser pulses, New Journal of Physics, vol.16, issue.2, p.155, 2014.
DOI : 10.1088/1367-2630/16/2/023023

URL : https://hal.archives-ouvertes.fr/hal-01159022

J. Faure, Concept of a laser-plasma-based electron source for sub-10-fs electron diffraction, Physical Review Accelerators and Beams, vol.19, issue.2, p.155, 2016.
DOI : 10.1103/PhysRevAccelBeams.19.021302

URL : https://hal.archives-ouvertes.fr/hal-01403058

A. Lifschitz, Optical phase effects in electron wakefield acceleration using fewcycle laser pulses, New Journal of Physics, vol.14, p.159, 2012.
DOI : 10.1088/1367-2630/14/5/053045

URL : https://hal.archives-ouvertes.fr/hal-01164040

J. Faure, Concept of a laser-plasma-based electron source for sub-10-fs electron diffraction, Physical Review Accelerators and Beams, vol.19, issue.2, p.162, 2016.
DOI : 10.1103/PhysRevAccelBeams.19.021302

URL : https://hal.archives-ouvertes.fr/hal-01403058

B. Beaurepaire, Electron acceleration in sub-relativistic wakefields driven by fewcycle laser pulses, New Journal of Physics, vol.16, p.161, 2014.
DOI : 10.1088/1367-2630/16/2/023023

URL : https://hal.archives-ouvertes.fr/hal-01159022

O. Lundh, Few femtosecond, few kiloampere electron bunch produced by a laser???plasma accelerator, Nature Physics, vol.7359, issue.3, pp.219-222, 2011.
DOI : 10.1063/1.2360988

URL : https://hal.archives-ouvertes.fr/hal-00803781