Supersymmetric Gauge Theories from String Theory - Université Pierre et Marie Curie Accéder directement au contenu
Thèse Année : 2005

Supersymmetric Gauge Theories from String Theory

Résumé

The subject of this thesis are various ways to construct four-dimensional quantum field theories from string theory. In a first part we study the generation of a supersymmetric Yang-Mills theory, coupled to an adjoint chiral superfield, from type IIB string theory on non-compact Calabi-Yau manifolds, with D-branes wrapping certain subcycles. Properties of the gauge theory are then mapped to the geometric structure of the Calabi-Yau space. In particular, the low energy effective superpotential, governing the vacuum structure of the gauge theory, can in principle be calculated from the open (topological) string theory. Unfortunately, in practice this is not feasible. Quite interestingly, however, it turns out that the low energy dynamics of the gauge theory is captured by the geometry of another non-compact Calabi-Yau manifold, which is related to the original Calabi-Yau by a geometric transition. Type IIB string theory on this second Calabi-Yau manifold, with additional background fluxes switched on, then generates a four-dimensional gauge theory, which is nothing but the low energy effective theory of the original gauge theory. As to derive the low energy effective superpotential one then only has to evaluate certain integrals on the second Calabi-Yau geometry. This can be done, at least perturbatively, and we find that the notoriously difficult task of studying the low energy dynamics of a non-Abelian gauge theory has been mapped to calculating integrals in a well-known geometry. It turns out, that these integrals are intimately related to quantities in holomorphic matrix models, and therefore the effective superpotential can be rewritten in terms of matrix model expressions. Even if the Calabi-Yau geometry is too complicated to evaluate the geometric integrals explicitly, one can then always use matrix model perturbation theory to calculate the effective superpotential. This intriguing picture has been worked out by a number of authors over the last years. The original results of this thesis comprise the precise form of the special geometry relations on local Calabi-Yau manifolds. We analyse in detail the cut-off dependence of these geometric integrals, as well as their relation to the matrix model free energy. In particular, on local Calabi-Yau manifolds we propose a pairing between forms and cycles, which removes all divergences apart from the logarithmic one. The detailed analysis of the holomorphic matrix model leads to a clarification of several points related to its saddle point expansion. In particular, we show that requiring the planar spectral density to be real leads to a restriction of the shape of Riemann surfaces, that appears in the planar limit of the matrix model. This in turns constrains the form of the contour along which the eigenvalues have to be integrated. All these results are used to exactly calculate the planar free energy of a matrix model with cubic potential.
The second part of this work covers the generation of four-dimensional supersymmetric gauge theories, carrying several important characteristic features of the standard model, from compactifications of eleven-dimensional supergravity on $G_2$-manifolds. If the latter contain conical singularities, chiral fermions are present in the four-dimensional gauge theory, which potentially lead to anomalies. We show that, locally at each singularity, these anomalies are cancelled by the non-invariance of the classical action through a mechanism called ``anomaly inflow". Unfortunately, no explicit metric of a compact G_2-manifold is known. Here we construct families of metrics on compact weak G_2-manifolds, which contain two conical singularities. Weak G_2-manifolds have properties that are similar to the ones of proper G_2-manifolds, and hence the explicit examples might be useful to better understand the generic situation. Finally, we reconsider the relation between eleven-dimensional supergravity and the E_8\times E_8-heterotic string. This is done by carefully studying the anomalies that appear if the supergravity theory is formulated on a ten-manifold times the interval. Again we find that the anomalies cancel locally at the boundaries of the interval through anomaly inflow, provided one suitably modifies the classical action.
Cette thèse traite de plusieurs façons de construire une théorie quantiques des champs en quatre dimensions à partir de la théorie des cordes.

Dans une première partie nous étudions la construction d'une théorie Yang-Mills supersymétrique, couplée à un superchamp chiral dans la représentation adjointe, à partir de la théorie des cordes de type IIB sur une variété Calabi-Yau non compacte, avec des D-branes qui enroulent certaines sousvariétés. Les propriétés de
la théorie de jauge sont alors reflétées dans la structure
géométrique de la variété Calabi-Yau. En particulier, on peut calculer en principe le superpotentiel effectif de basse énergie qui décrit la structure des vides de la théorie de jauge en utilisant la théorie des cordes (topologiques). Malheureusement, en pratique, ceci n'est pas faisable. Il est remarquable qu'on puisse cependant montrer que la dynamique de basse énergie de la
théorie de jauge est codée par la géométrie d'une autre variété Calabi-Yau non compacte, reliée à la première par une transition géométrique. La théorie des cordes de type IIB sur cette deuxième variété, dans laquelle sont allumés des flux de fond appropriés, génère une théorie de jauge en quatre dimensions, qui n'est d'autre que la théorie effective de basse énergie de la théorie de
jauge originale. Ainsi, pour obtenir le superpotentiel effectif de basse énergie il suffit simplement de calculer certaines intégrales dans la deuxième géométrie Calabi-Yau, ce qui est faisable, au moins perturbativement. On trouve alors que le problème extrêmement difficile d'étudier la dynamique de basse
énergie d'une théorie de jauge non Abelienne a été réduit à celui de calculer certaines intégrales dans une géométrie connue. On peut démontrer que ces intégrales sont intimement reliées à certaines quantités dans un modèle de matrices holomorphes, et on peut alors calculer le superpotentiel effectif comme fonction de
certaines expressions du model de matrices. Il est remarquable que la série perturbative du modèle de matrices calcule alors le superpotentiel effectif non-perturbatif.

Ces relations étonnantes ont été découvertes et élaborée par plusieurs auteurs au cours des dernières années. Les résultats originaux de cette thèse comprennent la forme précise des relations de la ``géométrie spéciale" sur une variété Calabi-Yau
non compacte. Nous étudions en détail comment ces intégrales géométriques dépendent du cut-off, et leur relation à l'énergie libre du modèle de matrices. En particulier, sur une variété Calabi-Yau non compacte nous proposons une forme bilineaire sur le
produit direct de l'espace des formes avec l'espace des cycles, qui élimine toutes les divergences, sauf la divergence logarithmique. Notre analyse détaillée du modèle de matrices holomorphes clarifie aussi plusieurs aspects reliés à la méthode du col de ce modèle de matrices. Nous montrons en particulier qu'exiger une densité spectrale réelle restreint la forme de la
courbe Riemannienne qui apparaît dans la limite planaire du modèle de matrices. Çela nous donne des contraintes sur la forme du contour sur lequel les valeurs propres sont intégrées. Tous ces
résultats sont utilisés pour calculer explicitement l'énergie libre planaire d'un modèle de matrices avec un potentiel cubique.

La deuxième partie de cette thèse concerne la génération de théories de jauge supersymétriques en quatre dimensions comportant des aspects caractéristiques du modèle standard à partir de
compactifications de la supergravité en onze dimensions sur une variété G_2. Si cette variété contient une singularité conique, des fermions chiraux apparaissent dans la théorie de jauge en quatre dimensions ce qui conduit potentiellement à des anomalies. Nous montrons que, localement à chaque singularité, les anomalies
correspondantes sont annulées par une non-invariance de l'action classique au singularités (``anomaly inflow"). Malheureusement, aucune métrique d'une variété G_2 compacte n'est connue explicitement. Nous construisons ici des familles de métriques sur des variétés compactes faiblement G_2, qui contiennent deux singularités coniques. Les variétés faiblement G_2 ont des propriétés semblables aux propriétés des variétés G_2, et alors ces exemples explicites pourraient être utiles pour mieux comprendre la situation générique. Finalement, nous regardons la
relation entre la supergravité en onze dimensions et la théorie des cordes hétérotiques E_8\times E_8. Nous étudions en détail les anomalies qui apparaissent si la supergravité est formulée sur le produit d'un espace de dix dimensions et un intervalle. Encore une fois nous trouvons que les anomalies s'annulent localement sur
chaque bord de l'intervalle si on modifie l'action classique d'une façon appropriée.
Fichier principal
Vignette du fichier
Doktorarbeit.pdf (1.76 Mo) Télécharger le fichier
Loading...

Dates et versions

tel-00011979 , version 1 (19-03-2006)

Identifiants

  • HAL Id : tel-00011979 , version 1

Citer

Steffen Metzger. Supersymmetric Gauge Theories from String Theory. Mathematical Physics [math-ph]. Université Pierre et Marie Curie - Paris VI; Ludwig-Maximilians-Universität München, 2005. English. ⟨NNT : ⟩. ⟨tel-00011979⟩
302 Consultations
1329 Téléchargements

Partager

Gmail Facebook X LinkedIn More