Complete Radiation Boundary Conditions for Convective Waves

Thomas Hagstrom 1 Eliane Bécache 2 Dan Givoli 3 Kurt Stein 1
2 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : Local approximate radiation boundary conditions of optimal efficiency for the convective wave equation and the linearized Euler equations in waveguide geometry are formulated, analyzed, and tested. The results extend and improve for the convective case the general formulation of high-order local radiation boundary condition sequences for anisotropic scalar equations developed in [4].
Document type :
Journal articles
Complete list of metadatas

https://hal-ensta-paris.archives-ouvertes.fr//hal-00969307
Contributor : Aurélien Arnoux <>
Submitted on : Wednesday, April 2, 2014 - 1:12:47 PM
Last modification on : Wednesday, July 3, 2019 - 10:48:03 AM

Identifiers

Collections

Citation

Thomas Hagstrom, Eliane Bécache, Dan Givoli, Kurt Stein. Complete Radiation Boundary Conditions for Convective Waves. Communications in Computational Physics, Global Science Press, 2012, 11 (2), pp.610-628. ⟨10.4208/cicp.231209.060111s⟩. ⟨hal-00969307⟩

Share

Metrics

Record views

248