Skip to Main content Skip to Navigation
Journal articles

Complete Radiation Boundary Conditions for Convective Waves

Thomas Hagstrom 1 Eliane Bécache 2 Dan Givoli 3 Kurt Stein 1
2 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
CNRS - Centre National de la Recherche Scientifique : UMR7231, UMA - Unité de Mathématiques Appliquées, Inria Saclay - Ile de France
Abstract : Local approximate radiation boundary conditions of optimal efficiency for the convective wave equation and the linearized Euler equations in waveguide geometry are formulated, analyzed, and tested. The results extend and improve for the convective case the general formulation of high-order local radiation boundary condition sequences for anisotropic scalar equations developed in [4].
Document type :
Journal articles
Complete list of metadatas
Contributor : Aurélien Arnoux <>
Submitted on : Wednesday, April 2, 2014 - 1:12:47 PM
Last modification on : Wednesday, July 3, 2019 - 10:48:03 AM




Thomas Hagstrom, Eliane Bécache, Dan Givoli, Kurt Stein. Complete Radiation Boundary Conditions for Convective Waves. Communications in Computational Physics, Global Science Press, 2012, 11 (2), pp.610-628. ⟨10.4208/cicp.231209.060111s⟩. ⟨hal-00969307⟩



Record views