**Abstract** : We consider a structural acoustic wave equation with nonlinear acoustic boundary conditions. This is a coupled system of second and first order in time partial differential equations, with boundary conditions on the interface. We prove wellposedness in the Hadamard sense for strong and weak solutions. The main tool used in the proof is the theory of nonlinear semigroups. We present the system of partial differential equations as a suitable Cauchy problem dw/dt = Aw. Though the operator A is not maximally dissipative we are able to show that it is a translate of a maximally dissipative operator. The obtained semigroup solution is shown to satisfy a suitable variational equality, thus giving weak solutions to the system of PDEs. The results obtained (i) dispel the notion that the model does not generate semigroup solutions, (ii) provide treatment of nonlinear models, and (iii) provide existence of a correct state space which is invariant under the flow-thus showing that physical model under consideration is a dynamical system. The latter is obtained by eliminating compatibility conditions which have been assumed in previous work (on the linear case).