Mixed Higher Order Spectral Finite Elements for Reissner-Mindlin Equations in the Time Domain

Gary Cohen 1 Pascal Grob 1
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : We construct a class of high order numerical approximations for the Reissner-Mindlin plate model in the time domain, based on mixed spectral finite elements with mass lumping. In this way we obtain explicit time-stepping schemes. We first compare the Reissner-Mindlin model to three-dimensional (3D) solutions to validate our method. Then, we show the advantages of the schemes in terms of accuracy and computational time.
Document type :
Journal articles
Complete list of metadatas

https://hal-ensta-paris.archives-ouvertes.fr//hal-00976782
Contributor : Aurélien Arnoux <>
Submitted on : Thursday, April 10, 2014 - 1:24:31 PM
Last modification on : Wednesday, July 3, 2019 - 10:48:03 AM

Identifiers

Collections

Citation

Gary Cohen, Pascal Grob. Mixed Higher Order Spectral Finite Elements for Reissner-Mindlin Equations in the Time Domain. SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2007, 29 (3), pp.986-1005. ⟨10.1137/050642332⟩. ⟨hal-00976782⟩

Share

Metrics

Record views

142