Discontinuous Galerkin methods for Maxwell's equations in the time domain

Gary Cohen 1 Xavier Ferrieres Sébastien Pernet 1
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : In this article, we describe a new high-order Discontinuous Galerkin approach to Maxwell's equations in the time domain. This approach is based on hexahedral meshes and uses a mass-lumping technique. Thanks to the orthogonality of the basis functions and a judicious choice of the approximation spaces, it provides an efficient solver for these equations in terms of storage and CPU time.
Document type :
Journal articles
Complete list of metadatas

https://hal-ensta-paris.archives-ouvertes.fr//hal-00977104
Contributor : Aurélien Arnoux <>
Submitted on : Thursday, April 10, 2014 - 5:26:23 PM
Last modification on : Wednesday, July 3, 2019 - 10:48:03 AM

Identifiers

Collections

Citation

Gary Cohen, Xavier Ferrieres, Sébastien Pernet. Discontinuous Galerkin methods for Maxwell's equations in the time domain. Comptes Rendus Physique, Elsevier Masson, 2006, 7, pp.494-500. ⟨10.1016/j.crhy.2006.03.004⟩. ⟨hal-00977104⟩

Share

Metrics

Record views

160