Skip to Main content Skip to Navigation
Journal articles

An efficient numerical method for the resolution of the Kirchhoff-Love dynamic plate equation

Eliane Bécache 1 Grégoire Derveaux 1 Patrick Joly 1
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
CNRS - Centre National de la Recherche Scientifique : UMR7231, UMA - Unité de Mathématiques Appliquées, Inria Saclay - Ile de France
Abstract : We solve numerically the Kirchhoff-Love dynamic plate equation for an anisotropic heterogeneous material using a spectral method. A mixed velocity-moment formulation is proposed for the space approximation allowing the use of classical Lagrange finite elements. The benefit of using high order elements is shown through a numerical dispersion analysis. The system resulting from this spatial discretization is solved analytically. Hence this method is particularly efficient for long duration experiments. This time evolution method is compared with explicit and implicit finite differences schemes in terms of accuracy and computation time. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005
Document type :
Journal articles
Complete list of metadatas

https://hal-ensta-paris.archives-ouvertes.fr//hal-00982754
Contributor : Aurélien Arnoux <>
Submitted on : Thursday, April 24, 2014 - 12:50:38 PM
Last modification on : Wednesday, July 3, 2019 - 10:48:03 AM

Links full text

Identifiers

Collections

Citation

Eliane Bécache, Grégoire Derveaux, Patrick Joly. An efficient numerical method for the resolution of the Kirchhoff-Love dynamic plate equation. Numerical Methods for Partial Differential Equations, Wiley, 2005, 21 (2), pp.323 - 348. ⟨10.1002/num.20041⟩. ⟨hal-00982754⟩

Share

Metrics

Record views

296