Skip to Main content Skip to Navigation
Journal articles

Comparison of Reduction Methods for Finite Element Geometrically Nonlinear Beam Structures

Abstract : The aim of this contribution is to present numerical comparisons of model-order reduction methods for geometrically nonlinear structures in the general framework of finite element (FE) procedures. Three different methods are compared: the implicit condensation and expansion (ICE), the quadratic manifold computed from modal derivatives (MD), and the direct normal form (DNF) procedure, the latter expressing the reduced dynamics in an invariant-based span of the phase space. The methods are first presented in order to underline their common points and differences, highlighting in particular that ICE and MD use reduction subspaces that are not invariant. A simple analytical example is then used in order to analyze how the different treatments of quadratic nonlinearities by the three methods can affect the predictions. Finally, three beam examples are used to emphasize the ability of the methods to handle curvature (on a curved beam), 1:1 internal resonance (on a clamped-clamped beam with two polarizations), and inertia nonlinearity (on a cantilever beam).
Complete list of metadata
Contributor : Cyril Touzé Connect in order to contact the contributor
Submitted on : Wednesday, March 10, 2021 - 12:39:00 PM
Last modification on : Tuesday, January 18, 2022 - 2:26:07 PM
Long-term archiving on: : Friday, June 11, 2021 - 6:45:43 PM


Publisher files allowed on an open archive



Yichang Shen, Alessandra Vizzaccaro, Nassim Kesmia, Ting Yu, Loic Salles, et al.. Comparison of Reduction Methods for Finite Element Geometrically Nonlinear Beam Structures. Vibration, MDPI, 2021, 4, pp.175 - 204. ⟨10.3390/vibration4010014⟩. ⟨hal-03164983⟩



Les métriques sont temporairement indisponibles