Skip to Main content Skip to Navigation
Journal articles

Modeling the Dissociation Conditions of Carbon Dioxide + TBAB, TBAC, TBAF, and TBPB Semiclathrate Hydrates

Abstract : The thermodynamic approach developed by Paricaud [J. Phys. Chem. B 2011, 115, 288-299] is applied to predict the dissociation conditions of semiclathrate hydrates made with tetra-n-butyl ammonium bromide (TBAB) tetra-n-butyl ammonium chloride (TBAC), tetra-n-butyl ammonium fluoride (TBAF), and tetra-n-butyl phosphonium bromide (TBPB). The SAFT-VRE equation of state is used to describe the properties of fluid phases, and a good description of osmotic and mean activity coefficients of electrolyte solution is obtained. The temperature-composition diagrams of water + tetra-n-alkylammonium/alkylphosphonium salt binary systems are well described by the model. Group contribution methodsare proposed to predict the fusion enthalpies and the cogruent melting points of semiclathrate hydrates. The van der Waals and Platteeuw theory is combined with the model to calculate the dissociation conditions of carbon dioxide semiclathrate hydrates. The liquid-vapor-hydrate three phase lines can be accurately described over wiede ranges of pressure and salt concentrations, by optimizing only one parameter per hydrate phase.
Document type :
Journal articles
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-01153016
Contributor : Patrice Paricaud Connect in order to contact the contributor
Submitted on : Tuesday, May 19, 2015 - 1:17:40 AM
Last modification on : Friday, April 9, 2021 - 12:02:04 PM

Identifiers

Citation

Ayako Fukumoto, Patrice Paricaud, Didier Dalmazzone, Wassila Bouchafaa, Thi Thu-Suong Ho, et al.. Modeling the Dissociation Conditions of Carbon Dioxide + TBAB, TBAC, TBAF, and TBPB Semiclathrate Hydrates. Journal of Chemical and Engineering Data, American Chemical Society, 2014, 59 (10), pp.3193-3204. ⟨10.1021/je500243k⟩. ⟨hal-01153016⟩

Share

Metrics

Record views

251